欢迎来到天天文库
浏览记录
ID:22299589
大小:374.50 KB
页数:6页
时间:2018-10-28
《专题提升十二与圆的切线有关的计算与证明》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、专题提升(十二) 与圆的切线有关的计算与证明类型之一 与切线的性质有关的计算或证明【经典母题】如图Z12-1,⊙O的切线PC交直径AB的延长线于点P,C为切点,若∠P=30°,⊙O的半径为1,则PB的长为__1__.图Z12-1 经典母题答图【解析】如答图,连结OC.∵PC为⊙O的切线,∴∠PCO=90°,在Rt△OCP中,∵OC=1,∠P=30°,∴OP=2OC=2,∴PB=OP-OB=2-1=1.【思想方法】 (1)已知圆的切线,可得切线垂直于过切点的半径;(2)已知圆的切线,常作过切点的半
2、径,得到切线与半径垂直.【中考变形】[2017·天津]已知AB是⊙O的直径,AT是⊙O的切线,∠ABT=50°,BT交⊙O于点C,E是AB上一点,延长CE交⊙O于点D.(1)如图Z12-2①,求∠T和∠CDB的大小;(2)如图②,当BE=BC时,求∠CDO的大小.图Z12-2解:(1)如答图①,连结AC,∵AT是⊙O的切线,AB是⊙O的直径,∴AT⊥AB,即∠TAB=90°,∵∠ABT=50°,∴∠T=90°-∠ABT=40°,由AB是⊙O的直径,得∠ACB=90°,∴∠CAB=90°-∠ABC=4
3、0°,∴∠CDB=∠CAB=40°;中考变形答图① 中考变形答图②(2)如答图②,连结AD,在△BCE中,BE=BC,∠EBC=50°,∴∠BCE=∠BEC=65°,∴∠BAD=∠BCD=65°,∵OA=OD,∴∠ODA=∠OAD=65°,∵∠ADC=∠ABC=50°,∴∠CDO=∠ODA-∠ADC=65°-50°=15°.【中考预测】[2017·宿迁]如图Z12-3,AB与⊙O相切于点B,BC为⊙O的弦,OC⊥OA,OA与BC相交于点P.(1)求证:AP=AB;(2)若OB=4,AB=3,求线段
4、BP的长. 图Z12-3 中考预测答图解:(1)证明:∵OC=OB,∴∠OCB=∠OBC,∵AB是⊙O的切线,∴OB⊥AB,∴∠OBA=90°,∴∠ABP+∠OBC=90°,∵OC⊥AO,∴∠AOC=90°,∴∠OCB+∠CPO=90°,∵∠APB=∠CPO,∴∠APB=∠ABP,∴AP=AB;(2)如答图,作OH⊥BC于H.在Rt△OAB中,∵OB=4,AB=3,∴OA==5,∵AP=AB=3,∴PO=2.在Rt△POC中,PC==2,∵PC·OH=OC·OP,∴OH==,∴CH==,∵OH⊥
5、BC,∴CH=BH,∴BC=2CH=,∴BP=BC-PC=-2=.类型之二 与切线的判定有关的计算或证明【经典母题】已知:如图Z12-4,A是⊙O外一点,AO的延长线交⊙O于点C,点B在圆上,且AB=BC,∠A=30°,求证:直线AB是⊙O的切线.图Z12-4 经典母题答图证明:如答图,连结OB,∵OB=OC,AB=BC,∠A=30°,∴∠OBC=∠C=∠A=30°,∴∠AOB=∠C+∠OBC=60°.∵∠ABO=180°-(∠AOB+∠A)=180°-(60°+30°)=90°,∴AB⊥OB,
6、又∵OB为⊙O半径,∴AB是⊙O的切线.【思想方法】 证明圆的切线常用两种方法“作半径,证垂直”或者“作垂直,证半径”.【中考变形】1.[2016·黄石]如图Z12-5,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.图Z12-5 中考变形1答图解:(1)∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理,得AC=4;(2)证明:如答图,连结OC,∵A
7、C是∠DAB的平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴直线CD是⊙O的切线.2.[2017·南充]如图Z12-6,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连结DE并延长交AC的延长线点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.图Z12
8、-6 中考变形2答图【解析】(1)连结OD,欲证DE是⊙O的切线,需证OD⊥DE,即需证∠ODE=90°,而∠ACB=90°,连结CD,根据“等边对等角”可知∠ODE=∠OCE=90°,从而得证;(2)在Rt△ODF中,利用勾股定理建立关于半径的方程求解.解:(1)证明:如答图,连结OD,CD.∵AC是⊙O的直径,∴∠ADC=90°.∴∠BDC=90°.又∵E为BC的中点,∴DE=BC=CE,∴∠EDC=∠ECD.∵OD=OC,∴∠ODC=∠OCD.∴∠EDC+∠
此文档下载收益归作者所有