基于基因数据神经网络模式分类研究

基于基因数据神经网络模式分类研究

ID:22096984

大小:298.50 KB

页数:25页

时间:2018-10-27

基于基因数据神经网络模式分类研究_第1页
基于基因数据神经网络模式分类研究_第2页
基于基因数据神经网络模式分类研究_第3页
基于基因数据神经网络模式分类研究_第4页
基于基因数据神经网络模式分类研究_第5页
资源描述:

《基于基因数据神经网络模式分类研究》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、.摘要识别活动是人类的基本活动,人们希望机器能代替人类进行识别工作,因此模式识别的理论和方法引起了人们极大的兴趣并进行了长期的研究,现已发展成一门多学科交叉的学科。人工神经网络能较好地模拟人的形象思维,而且由于具有大规模并行协同处理能力、较强的容错能力和联想能力以及较强的学习能力,所以将神经网络方法运用到模式识别中去解决识别问题己成为国内外科技工作者广泛关注的热点。本文首先对模式识别、神经网络的发展概况以及应用神经网络来进行模式识别作了较为详细的介绍,然后分析了模式识别的一些基本概念、方法,指出了其

2、困难和要求,同时给出了神经网络进行模式识别的方法。本课题我们将利用BP神经网络对基因数据进行分类,通过测试得到有三组数据,每组数据均有20个样本,且每一组样本具有共同的特性,并具有其特有的特性,每个样本具有114个数据,已知一组20个样本具有癌症特性,而另一组20个样本具有正常的特性,通过神经网络模型将第三组模型进行训练,做模式分类从而来判断其具有的特性。关键词:模式识别;人工神经网络;BP神经网络;..第一章前言1.1引言近年来,随着基因技术在医学中的广泛应用,基于基因数据的计算机辅助诊断迅速发展

3、起来。计算机辅助诊断可以提高医生诊断的准确率,协助医生对病人病因进行判断和识别并有助于预防疾病。在特征提取的基础上进行模式分类是基于基因的计算机辅助诊断的重要步骤,如人工神经网络等分类方法已广泛的应用于疾病诊断及预防系统之中。人工神经网络的研究已有半个多世纪的历史,起源于20世纪40年代,20世纪80年代开始蓬勃发展,如今出现了研究的新热潮.人工神经网络的研究主要是直接模拟人脑的结构和功能,具有生物神经网络的某些特性,在自学习、自组织、联想、及容错方面具有较强的能力,能用于联想、识别和决策.概率神经

4、网络是20世纪90年代初提出来的一个分类网络,它以贝叶决策和密度函数估计为理论基础,广泛应用于模式识别和模式分类领域.因此,研究概率神经网络的模式识别具有重要的理论意义和应用前景。1.2人工神经网络的发展及研究现状人工神经网络(ArtificialNeuralNetwork),亦称为神经网络(NeuralNetworks,NN),是由大量神经处理单元(神经元Neurons)广泛互连而成的网络,是对人脑的抽象、简化和模拟,反映人脑的基本特征。人工神经网络的研究是从人脑的生理结构出发来研究人的智能行为,

5、模拟人脑信息处理的功能。人工神经网络能模拟人类大脑的某些功能和思维方式,从而更好地解决模式识别、组合优化和智能控制等一系列本质上非计算的问题。它有如下优点:具有很强的自学习和自适应能力,可以处理不确定或不知道的系统;具有很强的信息综合能力,能同时处理定量和定性的信息,能很好地协调多种输入信息关系;具有很强的鲁棒性和容错性,因为信息是分布贮于网络内的神经元中;采用并行处理方法,使得计算快速;可以充分逼近任意复杂的非线性关系等。经过近半个世纪的发展,神经网络理论已在许多研究领域取得了广泛的成功,神经网络

6、和其它算法的结合和交叉,构造混合神经网络模型,是当前神经网络研究的主要趋势。如神经网络和模糊逻辑结合,建立模糊神经网络;将混沌理论和神经网络结合建立混沌神经网络;将优化算法和神经网络结合,利用优化算法优化神经网络的结构或权值;将小波分析和神经网络结合建立小波神经网络;贝叶斯学习以及粗糙集理论和神经网络结合等,都是当前神经网络研究的热点。..到目前为止,神经网络的类型已多达数百种,神经网络的理论研究和实际应用有了引人注目的发展。神经网络在向纵深发展的同时,也在向模糊技术、进化计算等智能方法相结合的方向

7、上发展,并广泛应用于模式识别等多个领域,尤其是在模式识别方面,神经网络所表现出来的能力超过了包括统计方法、静态方法和人工智能方法在内的传统方法。1.3研究意义神经网络通俗来讲,就是人们平时所说的“人工智能”。这个词是神经网络在人类大脑上历史基础的结果。神经网络是基于人类大脑工作的简化模型-这就解释了与人脑相关的神经网络术语。例如,神经网络是经过训练的,而训练的过程被称为"学习"。神经网络,例如多层的感知器,甚至使用被称为"神经元"的内部结构,神经细胞由此接收输入并且以不同的强度发射信号。人工神经元网

8、络是生物神经网络的一种模拟和近似,它从结构、实现机理和功能上模拟生物神经网络。从系统观点看,人工神经元网络是由大量神经元通过极其丰富和完善的连接而构成的自适应非线性动态系统。模式识别是一种从大量信息和数据出发,在专家经验和已有认识的基础上,利用计算机和数学推理的方法对形状、模式、曲线、数字、字符格式和图形自动完成识别的过程。模式识别包括相互关联的两个阶段,即学习阶段和实现阶段,前者是对样本进行特征选择,寻找分类的规律,后者是根据分类规律对未知样本集进行分类和识别。广义

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。