资源描述:
《模糊神经网络的预测算法在嘉陵江水质评测中的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、模糊神经网络的预测算法一一水质评价一、案例背景1、模糊数学简介模糊数学是川来描述、研宄和处理事物所具有的模糊特征的数学,“模糊”是指他的研究对象,而“数学”是指他的研究方法。模糊数学屮最基本的概念是隶属度和模糊隶属度函数。其屮,隶属度是指元素M属于模糊子集f的隶属程度,用Uf(u)表示,他是一个在[0,1]之间的数。1^(11)越接近于0,表示u属于模糊子集f的程度越小;越接近于1,表示H属于f的程度越大。模糊隶属度函数是用于定量计算元素隶属度的函数,模糊隶属度函数一般包括三角函数、梯形函数和正态函数。2、T-S模糊模型T-S模糊系统是一种自适应能力很强的模糊系
2、统,该模型不仅能自动更新,还能不断修正模糊子集的隶属函数。T-S模糊系统用如T的“if-then”规则形式来定义,在规则为f的情况下,模糊推理如下:R*:IfXiisA/,x2isA2',•••XkisAk1thenyi=pol+pi1x+***+pk1Xk其中,4^为模糊系统的模糊集;6(」=1,2,…,k)为模糊参数;y,为根据模糊规则得到的输出,输出部分(即if部分)是模糊的,输出部分(即then部分)是确定的,该模糊推理表示输出为输入的线性组合。假设对于输入量x=[xl,x2,-,xj,首先根据模糊规则计算各输入变量Xj的隶属度。UA,j=exp(-(x
3、j-c1j)/bIj)j=l,2,•••,k;i=l,2,•••,n式中,C、,b1」分别为隶属度函数的中心和宽度;k为输入参数数;n为模糊子集数。将各隶属度进行模糊计算,采用模糊算子为连乘算子。w'=pA*j(xl)*ya2j(x2)氺…氺uAkji=l,2,…,n根据模糊计算结果计算模糊型的输出值y:。1(Pi0+Pi1xl+…十Pxk)/O3、T-S模糊神经网络模型T-S模糊神经网络分为输入层、模糊化层、模糊规则计划层和输出层四层。输入层与输入向煊X:连接,节点数与输入向量的维数相同。模糊化层采用隶属度函数对输入值进行模糊化得到模糊隶属度值P。模糊规则计
4、算层采用模糊连乘公式计算得到O。输出层采用公式计算模糊神经网络的输山。模糊祌经M络的学习算法如下(1)误差计算式中,&是网络期望输出;乂.是网络实际输出;e魏期望输出和实际输出的误差(2)系数修正P(k)=pj(k—1)3e(jd—yc)(jo1/•<式中,M为神经网络系数;汉为网络学习率;Xy•为网络输入参数;VV'为输入参数隶属度连乘积。(3)参数修正•;(々〉=b^k)=ya-1)-/?db式中,44分别为隶属度函数的中心和宽度4、水质评价水质评测是根据水质评测标准和采样水样本各项指标值,通过一定的数学模型计算确定采样水样本的水质等级。水质评测的目的是
5、能够准确判断出采样水样本的污染等级,为污染防治和水源保护提供依据。水体水质的分析主要包括氨氮、溶解氧、化学需氧量、高锰酸盐指数、总磷和总氮六项指标。其中氨氮是有机物有氧分解的产物,可导致水富营养化现象产生,是水体富营养化的指标。化学需氧量是采用强氧化剂络酸钾处理水样,消耗的氧化剂量是水中还原性物质多少的指标。《锰酸钾足反映有机污染的指标。溶解氧足溶解在水屮的氧。总磷是水体屮的含磷量,是衡量水体富营养化的指标。总氮是水体中氮的含量,也是衡量水体富营养化的指韧。(各项数据在附件的数据库中。)地表水环境质量标准如下所示:地表水环境质量标准分炎I类11类ID类IV类V类
6、氮氮/(mg.L1)<0.150.501.01.52.0溶解铽/(mg•7.56.05.03.02.0化卞苗氧键/(mK•L-»)1515203040卨锰酸盐指数/(mg•L1)<2.04.06.01015总磯/(mg.L-1)<0.020.100.200.300.40总氣/
7、6,模糊隶属度函数屮心和宽度c和b随机得到。图示:模糊神经网络水质评价算法流程模糊神将M络训练用训练数据模糊神经网络,由于水质评价真实数据比较难找,所以采用了等隔均匀分布方式内插水质指标标准数据生成样本的方式来生成训练样本,采用的水质指标标准数据来自木文的上表,网络反复训练100次。模糊祌经网络预测用训练好的模糊祌经网络评价采样水水质等级。三、编程实现根据模糊祌经网络原理,在MATLAB中编程实现基于模糊祌经网络的水质评价算法。1、网络初始化根据训练输入/输出数据确定网络结构,初始化模糊神经网络隶属度函数参数和系数,归一化训练数据。从数裾文件datal.mat中
8、下载训练数据,其中i叩u