基于隐马尔可夫模型hmm的语音识别系统原理

基于隐马尔可夫模型hmm的语音识别系统原理

ID:21992542

大小:53.50 KB

页数:5页

时间:2018-10-26

基于隐马尔可夫模型hmm的语音识别系统原理_第1页
基于隐马尔可夫模型hmm的语音识别系统原理_第2页
基于隐马尔可夫模型hmm的语音识别系统原理_第3页
基于隐马尔可夫模型hmm的语音识别系统原理_第4页
基于隐马尔可夫模型hmm的语音识别系统原理_第5页
资源描述:

《基于隐马尔可夫模型hmm的语音识别系统原理》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、基于隐马尔可夫模型HMM的语音识别系统原理:进入21世纪以来,多媒体信息技术飞跃发展,其中的一个热点就是语音识别技术,实现人机对话及交流一直是人类梦寐以求的。古典《天方夜谭》中的“芝麻开门”就是一种语音识别。语音识别(AutomaticS!oeechR-ecogndon)就是让机器能听懂人说的话并按照人的意图去执行相应任务,是一门涉及到信号处理,神经心理学,人工智能,计算机,语言学,通信等学科的涉及面非常宽的交艾学科。近年来,在工业、军事、交通、医学等诸多方面都有着广泛的应用。  关键词:隐马尔可夫模型;信号分析处理:语音识别  :TN912.34 :A :1006-8937(2011

2、)02-0089-01    我们可以设想,在不久的将来坐在办公司里的经理会对电脑说:“嗨!伙计,帮我通知一下公司所有员工,今天下午3:00准时开会。”这是科学家在几十年前的设想,语音识别长久以来一直是人们的美好愿望,让计算机领会人所说的话,实现人机对话是发展人机通信的主要目标。进入21世纪,随着计算机的日益普及,怎样给不熟悉计算机的人提供一个友好而又简易的操作平台,是我们非常感兴趣的问题,而语音识别技术就是其中最直接的方法之一。    20世纪80年代中期以来,新技术的逐渐成熟和发展使语音识别技术有了实质性的进展,尤其是隐马尔可夫模型(HMM)的研究和广泛应用,推动了语音识别的迅速发

3、展,同时,语音识别领域也正处在一个黄金开发的关键时期,各国的开发人员正在向特定人到非特定人,孤立词汇向连接词,小词汇量向大词汇量来扩展研究领域,可以毫不犹豫地说,语音识别会让计算机变得“善解人意”,许多事情将不再是“对牛弹琴”,最终用户的口述会取代鼠标,键盘这些传统输入设备,只需要用户的嘴和麦克风就能实现对计算机的绝对控制。    1 隐马尔可夫模型HMM的引入    现在假定HMM是一个输出符号序列的统计模型,具有N个状态s1,s2…sn,在一个周期内从一个状态转到另一个状态,每次转移时输出一个符号,转移到了哪个状态以及输出什么符号,分别由状态转移概率和转移时的输出概率来决定,由于只

4、能观测到输出符号序列,不能观测到状态转移序列,因此成为隐藏的马尔可夫模型。    2 语音识别的特点    语音识别的意思是将人说话的内容和意思转换为计算机可读的输入,例如按键、二进制编码或者字符序列等。与说话人的识别不同,后者主要是识别和确认发出语音的人而非其中所包含的内容。语音识别的目的就是让机器昕匿人类口述的语言,包括了两方面的含义:第一是逐字逐句听懂而不是转化成书面的语言文字;第二是对口述语言中所包含的命令或请求加以领会,做出正确回应,而不仅仅只是拘泥于所有词汇的正确转换。    3 语音识别系统的工作流程    一般来说,一套完整的语音识别系统其工作过程分为7步:①对语音信号

5、进行分析和处理,除去冗余信息。②提取影响语音识别的关键信息和表达语言含义的特征信息。③紧扣特征信息,用最小单元识别字词。④按照不同语言的各自语法,依照先后次序识别字词。⑤把前后意思当作辅助识别条件,有利于分析和识别。⑥按照语义分析,给关键信息划分段落,取出所识别出的字词并连接起来,同时根据语句意思调整句子构成。⑦结合语义,仔细分析上下文的相互联系,对当前正在处理的语句进行适当修正。    4 语音识别系统基本原理框图及原理    语音识别系统基本原理结构如图1所示。语音识别原理有三点:①对语音信号中的语言信息编码是按照幅度谱的时间变化来进行;②由于语音是可以阅读的,也就是说声学信号可以

6、在不考虑说话人说话传达的信息内容的前提下用多个具有区别性的、离散的符号来表示;③语音的交互是一个认知过程,所以绝对不能与语法、语义和用语规范等方面分裂开来。  预处理,其中就包括对语音信号进行采样、克服混叠滤波、去除部分由个体发音的差异和环境引起的噪声影响,此外还会考虑到语音识别基本单元的选取和端点检测问题。反复训练是在识别之前通过让说话人多次重复语音,从原始语音信号样本中去除冗余信息,保留关键信息,再按照一定规则对数据加以整理,构成模式库。再者是模式匹配,它是整个语音识别系统的核心部分,是根据一定规则以及计算输入特征与库存模式之间的相似度,进而判断出输入语音的意思。  前端处理,先对

7、原始语音信号进行处理,再进行特征提取,消除噪声和不同说话人的发音差异带来的影响,使处理后的信号能够更完整地反映语音的本质特征。    5 当前亟待解决的问题    语音识别系统的性能受到许多因素的影响,包括不同说话人的发音方式、说话方式、环境噪音、传输信道衰落等等。具体要解决的问题有四点:①增强系统的鲁棒性,也就是说如果条件状况变得与训练时很不相同,系统的性能下降不能是突变的。②增加系统的适应能力,系统要能稳定连续的适应条件的变化,因为说话人存

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。