欢迎来到天天文库
浏览记录
ID:21833848
大小:517.20 KB
页数:19页
时间:2018-10-25
《行测数学秒杀技巧资料分析排列组合》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、中公教育·给人改变未来的力量公考培训第一品牌排列组合基本知识点回顾:1、排列:从N不同元素中,任取M个元素(被取元素各不相同)按照一定的顺序排成一列,叫做从N个不同元素中取出M个元素的一个排列。2、组合:从N个不同元素中取出M个元素并成一组,叫做从N个不同元素中取出M个元素的一个组合(不考虑元素顺序)3、分步计数原理(也称乘法原理):完成一件事,需要分成n个步骤,做第1步有ml种不同的方法,做第2步有m2种不同的方法…做第n步有mn种不同的方法。那么完成这件事共有N=m1*m2*…*mn种不同的方法。4、分类计数原理:完成一
2、件事有n类办法,在第一类办法中有ml种不同的方法,在第二类办法中有m2种不同的方法……在第n类办法中有mn种不同的方法,那么完成这件事共有N=ml+m2+…+mn种不同的方法。解题技巧:首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下儿种常用的解题方法:一、特殊元素(位置)用优先法中公学员内部专用资料19版权所有翻印必究中公教育·给人改变未来的力量公考培训第一品牌
3、把有限制条件的元素(位置)称为特殊元素(位置),对于这类问题一般采取特殊元素(位置)优先安排的方法。例1.6人站成一横排,其中甲不站左端也不站右端,有多少种不同站法?分析:解有限制条件的元素(位置)这类问题常采取特殊元素(位置)优先安排的方法。元素分析法:因为甲不能站左右两端,故第一步先让甲排在左右两端之间的任一位置上,有4种站法;第二步再让其余的5人站在其他5个位置上,有120种站法,故站法共有:480(种)二.相邻问题用捆绑法对于要求某几个元素必须排在一起的问题,可用“捆绑法”:即将这几个元素看作一个整体,视为一个元素,
4、与其他元素进行排列,然后相邻元素内部再进行排列。例2、5个男生和3个女生排成一排,3个女生必须排在一起,有多少种不同排法?解:把3个女生视为一个元素,与5个男生进行排列,共有6*5*4*3*2种,然后女生内部再进行排列,有6种,所以排法共有:4320(种)。三.相离问题用插空法中公学员内部专用资料19版权所有翻印必究中公教育·给人改变未来的力量公考培训第一品牌元素相离(即不相邻)问题,可以先将其他元素排好,然后再将不相邻的元素插入己排好的元素位置之间和两端的空中。例3.7人排成一排,甲、乙、丙3人互不相邻有多少种排法?解:先
5、将其余4人排成一排,有4*3*2*1种,再往4人之间及两端的5个空位中让甲、乙、丙插入,有5*4*3种,所以排法共有:1440(种)四.定序问题用除法对于在排列中,当某些元素次序一定时,可用此法。解题方法是:先将n个元素进行全排列有种,个元素的全排列有种,由于要求m个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到调序的作用,即若n个元素排成一列,其中m个元素次序一定,则有种排列方法。例4.由数字O、1、2、3、4、5组成没有重复数字的六位数,其中个位数字小于十位数字的六位数有多少个?解:不考虑限制条件,组成的六位
6、数有C(l,5)*P(5,5)种,其中个位与十位上的数字一定,所以所求的六位数有:C(1,5)*P(5,5)/2(个)五.分排问题用直排法对于把几个元素分成若干排的排列问题,若没有其他特殊要求,可采取统一成一排的方法求解。例5.9个人坐成三排,第一排2人,第二排3人,第三排4中公学员内部专用资料19版权所有翻印必究中公教育·给人改变未来的力量公考培训第一品牌人,则不同的坐法共有多少种?解:9个人可以在三排中随意就坐,无其他限制条件,所以三排可以看作一排来处理,不同的坐标共有P(9,9)种。六.复杂问题用排除法对于某些比较复杂
7、的或抽象的排列问题,可以采用转化思想,从问题的反面去考虑,先求出无限制条件的方法种数,然后去掉不符合条件的方法种数。在应用此法时要注意做到不重不漏。例6.四面体的顶点和各棱中点共有10个点,取其中4个不共面的点,则不同的取法共有()A.150种B.147种C.144种D.141种解:从10个点中任取4个点有C(4,10)种取法,其中4点共面的情况有三类。第一类,取出的4个点位于四面体的同一个面内,有4*C(4,6)种;第二类,取任一条棱上的3个点及该棱对棱的中点,这4点共面,有6种;第三类,由中位线构成的平行四边形(其两组对
8、边分别平行于四面体相对的两条棱),它的4个点共面,有3种。以上三类情况不合要求应减掉,所以不同的取法共有:C(10,4)-4*c(6,4)一6一3=141种。只l七.排列、组合综合问题用先选后排的策略处理排列、组合综合性问题一般是先选元素,后排列。例7.将4名教师分派到3所中学任教,每所中
此文档下载收益归作者所有