2017研究前沿--化学与材料科学

2017研究前沿--化学与材料科学

ID:21742073

大小:467.21 KB

页数:7页

时间:2018-10-24

2017研究前沿--化学与材料科学_第1页
2017研究前沿--化学与材料科学_第2页
2017研究前沿--化学与材料科学_第3页
2017研究前沿--化学与材料科学_第4页
2017研究前沿--化学与材料科学_第5页
资源描述:

《2017研究前沿--化学与材料科学》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2017研究前沿中国科学院科技战略咨询研究院中国科学院文献情报中心科睿唯安七、化学与材料科学1.热点前沿及重点热点前沿解读1.1化学与材料科学Top10热点前沿发展态势化学与材料科学领域Top10热点前沿主要分布在太阳能电池、有机合成、纳米技术、超级电容器、自由基聚合、上转换发光等领域。与2013-2016年相比,2017年Top10热点前沿既有延续又有发展。在太阳能电池领域,关于钙钛矿太阳能电池和聚合物太阳能电池的研究连年入选热点前沿或新兴前沿。在今年的Top10热点前沿中,聚合物太阳能电池延续了去年对

2、非富勒烯受体(小分子和聚合物)的关注,钙钛矿太阳能电池则侧重空穴传输材料研究。在有机合成领域,碳氢键的活化反应也是连年入选,往年侧重在钌、铑等贵金属的催化转化,今年是非贵金属钴的催化转化,另外今年还突出了间位碳氢键的活化。在纳米技术领域,不仅继续有具体的前沿研究入选,而且首次出现宏观的研究概念――纳米组装学。在超级电容器领域,基于纳米孔碳电极(2014年)、纳米二氧化锰电极材料(2016年)的超级电容器曾经入选热点前沿或新兴前沿,今年入选的是基于NiCo2S4电极材料的超级电容器。在自由基聚合领域,继20

3、14年入选新兴前沿后,光引发的聚合反应今年成为热点前沿。在上转换发光领域,“三重态-三重态湮灭上转换”入选热点前沿。1.2重点热点前沿——三价钴催化的碳氢键活化反应传统的合成化学基于活性官能团的相互转化,通常需要繁琐的预官能团化步骤。而碳氢键的直接化学转化可以避免这一过程,大大提高反应的原子经济性和步骤经济性,因而受到广泛关注并取得蓬勃发展。近十年来,过渡金属催化的碳氢键直接官能团化反应已成为重要的合成工具,特别是贵金属(铑、钌、铱、铂、金、银等)催化成果显著。然而,高昂的成本以及对环境可能造成的不利影响

4、限制了贵金属催化的大规模应用。因此,越来越多的研究人员将目光转向储量丰富、成本低廉的第一行过渡金属(锰、铁、钴、镍、铜等)。这点在《研究前沿》系列报告中也得以体现:在2013年和2014年的报告中,“钌、铑催化的碳氢键活化反应”进入化学领域Top10热点前沿,本年度则是“钴催化的碳氢键活化反应”入选。钴催化的碳氢键活化反应可分为低价钴(CoⅡ)催化和高价钴(CoⅢ)催化两类。本研究前沿是高价钴催化的碳氢键活化反应。2013年,日本东京大学金井求(MotomuKanai)教授和川岛茂裕(ShigehiroK

5、awashima)博士报道了Cp*CoⅢ(Cp*=五甲基环戊二烯)络合物催化的2-苯基吡啶碳氢键活化直接加成到亚胺、烯酮上的反应。此后,研究人员不断扩大Cp*CoⅢ催化剂的应用范围并研究其催化机理。与其替代对象Cp*RhⅢ相比,Cp*CoⅢ不仅可用于前者催化的反应,而且由于反应活性差异,导致可能采取不同的反应路线从而生成不同的产物。如表31所示,在本研究前沿中,德国、日本、美国、韩国以及中国等国家或地区发表了多篇核心论文。日本东京大学、德国哥廷根大学、明斯特大学、美国耶鲁大学、韩国基础科学研究院等研究机构

6、在该领域做出了突出贡献。浙江大学、北京大学、中科院大连化物所等研究机构的工作也比较突出。在施引论文方面(表32),中国的论文数量最多,表现出对该热点前沿的积极跟进。印度表现抢眼,在施引论文数量方面与德国并驾齐驱。此外,美国、韩国、日本等国家或地区也继续保持研究热度。在施引论文Top10机构中,中国科学院、浙江大学、德国哥廷根大学、明斯特大学、韩国基础科学研究院、科学技术研究院、日本东京大学等表2中的机构继续榜上有名,中国科学院发表的施引论文最多。此外,中国南京大学、兰州大学、韩国成均馆大学、印度理工学院等

7、研究机构也发表了多篇施引论文。1.3重点热点前沿——纳米组装学“纳米组装学”(nanoarchitectonics)这个概念最早由时任日本理化学研究所首席科学家的MasakazuAono教授(现在日本国立物质材料研究所工作)于2000年在第一届纳米组装学国际研讨会上提出。MasakazuAono教授认为,纳米技术不是微米技术在尺度上的简单延伸,两者存在重大不同但又容易混淆,因此有必要创造一个新的名词来反映研究范式上的变化。作为材料科学和技术在纳米尺度的研究范式,纳米组装学是指将纳米尺度结构单元(原子、分子

8、、功能组件)组装成所需纳米结构的技术体系,通过控制协调纳米结构内各种相互作用,使产生的结构具有新的功能。从2003年第一次出现在论文题目中到现在,纳米组装学已经扩散到多个领域并得到了广泛认可。从纳米结构组装、超分子自组装、杂化材料,到仿生酶、传感器、药物缓释等,纳米组装学在器件制造、能源和环境科学、生物和医学等领域得到广泛应用。2016年,AdvancedMaterials杂志组织了一期纳米组装学专刊,邀请日本、中国、美国、德

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。