欢迎来到天天文库
浏览记录
ID:21725582
大小:18.66 KB
页数:5页
时间:2018-10-24
《高中数学教学论文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高中数学教学论文:新课改下高中数学分析和解决问题能力的培养策略高中数学教学论文:高中数学新课程对于提高分析和解决问题的能力有着更深层次的要求,本文就我们教师在平时教学中应注重分析和解决问题能力的培养的方法和策略上进行研讨,得给出了一般性的结论.【关键词】 高中数学 数学建模 分析和解决问题的能力 思想方法 应用能力 交流与合作 新课标明确指出:高中数学课程对于提高分析和解决问题的能力,形成理性思维,发展智力和创新思维起着基础性作用.分析和解决问题的能力是指能阅读、理解对问题进行陈述的材料;能综合应用所学数
2、学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述,建立恰当的数学模型,利用对模型的求解的结果加以解释.在它是逻辑思维能力、运算能力、空间想象能力等基本数学能力的综合体现.由于高考数学科的命题原则是在考查基础知识的基础上,注重对数学思想和方法的考查,注重数学能力的考查,强调了综合性.这就对考生分析和解决问题的能力提出了更高的要求,也使试卷的题型更新,更具有开放性.纵观近几年的高考,学生在这一方面失分的普遍存在,如05年的全国卷I理科22题、06年的全国卷I理科20、21题,
3、07年的安徽文科21题、08年全国卷I的理科20、22题,这就要求我们教师在平时教学中注重分析和解决问题能力的培养,以减少在这一方面的失分.笔者就分析和解决问题能力的组成及培养谈几点雏见.一、分析和解决问题能力的组成 1、审题能力 审题是对条件和问题进行全面认识,对与条件和问题有关的全部情况进行分析研究,它是如何分析和解决问题的前提.审题能力主要是指充分理解题意,把握住题目本质的能力;分析、发现隐含条件以及化简、转化已知和所求的能力.要快捷、准确在解决问题,掌握题目的数形特点、能对条件或所求进行转化和发现隐含条件是
4、至关重要的. 例1、已知求的值.分析:怎样利用已知的二个等式?初看好象找不出条件和结论的联系.只好从未知入手,当然,首先想到的是把、分别求出,然后求出它们的乘积,这是个办法,但是不好求;于是可考虑将写成,转向求、.令 ,,于是.从方程的观点看,只要有、的二元一次方程就可求出、.于是转向求 ,.这样把问题转化为下列问题:已知 ① ② 求、的值.①2+
5、②2得 .②2-①2得,.这样问题就可以解决.从刚才的解答过程中可以看出,解决此题的关键在于挖掘所求和条件之间的联系,这需要一定的审题能力.由此可见,审题能力应是分析和解决问题能力的一个基本组成部分.2、 合理应用知识、思想、方法解决问题的能力高中数学知识包括函数、导数、不等式、数列、三角函数、复数、立体几何、解析几何、排列与组合、统计与概率等内容;数学思想包括数形结合、函数与方程思想、分类与讨论和等价转化等;数学方法包括待定系数法、换元法、数学归纳法、反证法、配方法、分离参数法等基本方法.只有理解和掌握数学基本知识、思想
6、、方法,才能解决高中数学中的一些基本问题,而合理选择和应用知识、思想、方法可以使问题解决得更迅速、顺畅.例2、设函数(Ⅰ)求函数的单调区间;(Ⅱ)已知对任意成立,求实数的取值范围.解(Ⅰ)若 则 列表如下: + 0 - - 单调增 极大值单调减 单调减 (Ⅱ)在 两边取对数,得 ,由于所以 (1)由(1)的结果可知,当时, ,为使(1)式对所有成立,当且仅当,即 在上述的解答过程中可以看出,本题主要考查用导数讨论函数的单调性,求参数取值范利用分离参数法、不等式的解
7、法等基本知识,分类讨论的数学思想方法的运算、推理等能力.3、 数学建模能力 近几年来,在高考数学试卷中,都有几道实际应用问题,这给学生的分析和解决问题的能力提出了挑战.而数学建模能力是解决实际应用问题的重要途径和核心.例3、某分公司经销某种品牌产品,每件产品的成本为3元,并且每件产品需向总公司交元()的管理费,预计当每件产品的售价为元()时,一年的销售量为万件.(Ⅰ)求分公司一年的利润(万元)与每件产品的售价的函数关系式;(Ⅱ)当每件产品的售价为多少元时,分公司一年的利润最大,并求出的最大值.解:(Ⅰ)分公司一年的利润
8、(万元)与售价的函数关系式为: .(Ⅱ) . 令得或(不合题意,舍去). ,. 在两侧的值由正变负. 所以(1)当即时, .(2)当即时, ,所以答:若,则当每件售价为9元时,分公司一年的利润最大,最大值(万元);若,则当每件售价为元时,分公司一年的利润最大,最大值(万元).评述:本题考查函数
此文档下载收益归作者所有