2.1《空间点,直线,平面之间的位置关系--平面》

2.1《空间点,直线,平面之间的位置关系--平面》

ID:21713973

大小:944.00 KB

页数:40页

时间:2018-10-20

2.1《空间点,直线,平面之间的位置关系--平面》_第1页
2.1《空间点,直线,平面之间的位置关系--平面》_第2页
2.1《空间点,直线,平面之间的位置关系--平面》_第3页
2.1《空间点,直线,平面之间的位置关系--平面》_第4页
2.1《空间点,直线,平面之间的位置关系--平面》_第5页
资源描述:

《2.1《空间点,直线,平面之间的位置关系--平面》》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2.1.1平面实例引入一、平面1.平面无大小,无边界,无厚薄,无面积,无限延展。2.、平面的表示方法(1)、图形表示(画法):常用平行四边形ABCD(2)、符号表示(记法):①平面α、平面β、平面γ②平面ABCD、平面ACADCBEF图形符号语言文字语言(读法)点在直线上点不在直线上点在平面内点不在平面内直线a、b交于点A二、点、线、面的基本位置关系(1)符号表示:(2)集合关系:点A、线a、面α图形符号语言文字语言(读法)直线a在平面内直线a与平面平行直线a与平面交于点平面与相交于直线注:一条直线把平面分成两部分.

2、一个平面把空间分成两部分.(2)直线a经过平面外一点M(3)直线在平面 内,又在平面 内(即平面和平面相交于直线)(1)点A在平面内,但不在平面内例2.将下列文字语言转化为符号语言:1、判断下列各题的说法正确与否,在正确的说法的题号后打,否则打:1、一个平面长4米,宽2米;()2、平面有边界;()3、一个平面的面积是25cm2;()4、菱形的面积是4cm2;()5、一个平面可以把空间分成两部分.()练习如果直线l与平面α有一个公共点P,直线l是否在平面α内?思考平面公理实际生活中,我们有这样的经验:把一根直尺边缘上的

3、任意两点放到桌面上,可以看到,直尺的整个边缘就落在了桌面上.思考平面公理如果直线l与平面α有两个公共点,直线l是否在平面α内?公理1如果一条直线上的两点在一个平面内,那么这条直线在此平面内.ABl作用:判定直线是否在平面内.平面公理在生产、生活中,人们经过长期观察与实践,总结出关于平面的一些基本性质,我们把它作为公理.这些公理是进一步推理的基础.生活中经常看到用三角架支撑照相机.平面公理公理2过不在一条直线上的三点,有且只有一个平面.ACB存在性唯一性作用:确定平面的主要依据.平面公理不在一条直线上的三个点A、B、C

4、所确定的平面,可以记成“平面ABC”.经过不在同一条直线上的三点,有且只有一个平面。公理2ABC公理2的三条推论:1.经过一条直线和这条直线外一点,有且只有一个平面2.经过两条相交直线,有且只有一个平面3.经过两条平行直线,有且只有一个平面把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点B?为什么?B思考平面公理B把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于一点B?为什么?思考平面公理公理3如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.作用

5、:①判断两个平面相交的依据.②判断点在直线上.lP平面公理例1如图,用符号表示下列图形中点、直线、平面之间的位置关系.alABalPb(1)(2)解:在(1)中,在(2)中,典型例题小结1.平面的概念;3.点、直线、平面间基本关系的文字语言,图形语言和符号语言之间关系的转换2.平面的画法、表示方法及两个平面相交的画法;4.三条公理2.画画以下四图,看得见的部分用实线描出.(2)已知A、B、C三点都是平面α与平面β的公共点,且α与β是两个不同的平面;练习6.(1)在平面内有A,O,B三点,在平面β内有B,O,C三点,试

6、画出它们的图形(3)两个平面的公共点的个数可能有()(4)三个平面两两相交,则它们交线的条数()A.0B.1C.2D.0或无数A.最多4条最少3条B.最多3条最少1条C.最多3条最少2条D.最多2条最少1条(5)已知空间四点中,无三点共线,则可确定A.一个平面B.四个平面C.一个或四个平面D.无法确定平面的个数③四条线段顺次首尾连接,所得的图形一定是平面图形吗?为什么?练习①为什么有的自行车后轮旁只安装一只撑脚?②三角形、梯形是否一定是平面图形?为什么?④用符号表示下列语句,并画出图形:⑴点A在平面α内,点B在平面α

7、外;⑵直线在平面α内,直线m不在平面α内;⑶平面α和β相交于直线;⑷直线经过平面α外一点P和平面α内一点Q;⑸直线是平面α和β的交线,直线m在平面α内,和m相交于点P.例1.将下列符号语言转化为图形语言:(1)(2)说明:画图的顺序:先画大件(平面),再画小件(点、线),,,,,,,观察长方体,你能发现长方体的两个相交平面有没有公共直线吗?观察这条公共直线B’C’叫做这两个平面A’B’C’D’和平面BB’C’C的交线.另一方面,相邻两个平面有一个公共点,如平面A’B’C’D’和平面BB’C’C有一个公共点B’,经过点

8、B有且只有一条过该点的公共直线B’C’.平面公理在正方体中,判断下列命题是否正确,并说明理由:①直线在平面内;错误随堂练习在正方体中,判断下列命题是否正确,并说明理由:②设正方形ABCD与的中心分别为O,,则平面与平面的交线为;正确随堂练习在正方体中,判断下列命题是否正确,并说明理由:③由点A,O,C可以确定一个平面;错误随堂练习在正方体中,判

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。