初三--二次函数基础分类练习题(含答案解析)

初三--二次函数基础分类练习题(含答案解析)

ID:21706752

大小:710.50 KB

页数:12页

时间:2018-10-24

初三--二次函数基础分类练习题(含答案解析)_第1页
初三--二次函数基础分类练习题(含答案解析)_第2页
初三--二次函数基础分类练习题(含答案解析)_第3页
初三--二次函数基础分类练习题(含答案解析)_第4页
初三--二次函数基础分类练习题(含答案解析)_第5页
资源描述:

《初三--二次函数基础分类练习题(含答案解析)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、word资料下载可编辑二次函数练习题练习一二次函数1、一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(米)与时间t(秒)的数据如下表:时间t(秒)1234…距离s(米)281832…写出用t表示s的函数关系式:2、下列函数:①;②;③;④;⑤,其中是二次函数的是,其中,,3、当时,函数(为常数)是关于的二次函数4、当时,函数是关于的二次函数5、当时,函数+3x是关于的二次函数6、若点A(2,)在函数的图像上,则A点的坐标是____.7、在圆的面积公式S=πr2中,s与r的

2、关系是(  )A、一次函数关系 B、正比例函数关系 C、反比例函数关系 D、二次函数关系8、正方形铁片边长为15cm,在四个角上各剪去一个边长为x(cm)的小正方形,用余下的部分做成一个无盖的盒子.  (1)求盒子的表面积S(cm2)与小正方形边长x(cm)之间的函数关系式;  (2)当小正方形边长为3cm时,求盒子的表面积.9、如图,矩形的长是4cm,宽是3cm,如果将长和宽都增加xcm,那么面积增加ycm2, ①求y与x之间的函数关系式.②求当边长增加多少时,面积增加8cm2.10、已知二次函

3、数当x=1时,y=-1;当x=2时,y=2,求该函数解析式.11、富根老伯想利用一边长为a米的旧墙及可以围成24米长的旧木料,建造猪舍三间,如图,它们的平面图是一排大小相等的长方形.(1)如果设猪舍的宽AB为x米,则猪舍的总面积S(米2)与x有怎样的函数关系?(2)请你帮富根老伯计算一下,如果猪舍的总面积为32米2,应该如何安排猪舍的长BC和宽AB的长度?旧墙的长度是否会对猪舍的长度有影响?怎样影响?专业技术资料word资料下载可编辑练习二函数的图象与性质1、填空:(1)抛物线的对称轴是(或),顶

4、点坐标是,当x时,y随x的增大而增大,当x时,y随x的增大而减小,当x=时,该函数有最值是;(2)抛物线的对称轴是(或),顶点坐标是,当x时,y随x的增大而增大,当x时,y随x的增大而减小,当x=时,该函数有最值是;2、对于函数下列说法:①当x取任何实数时,y的值总是正的;②x的值增大,y的值也增大;③y随x的增大而减小;④图象关于y轴对称.其中正确的是.3、抛物线y=-x2不具有的性质是(  )A、开口向下B、对称轴是y轴C、与y轴不相交D、最高点是原点4、苹果熟了,从树上落下所经过的路程s与下

5、落时间t满足S=gt2(g=9.8),则s与t的函数图像大致是( ) stO    stO   stO   stO A         B         C          D5、函数与的图象可能是()A.B.C.D.6、已知函数的图象是开口向下的抛物线,求的值.7、二次函数在其图象对称轴的左侧,y随x的增大而增大,求m的值.8、二次函数,当x1>x2>0时,求y1与y2的大小关系.9、已知函数是关于x的二次函数,求:(1)满足条件的m的值;(2)m为何值时,抛物线有最低点?求出这个最低点,这

6、时x为何值时,y随x的增大而增大;(3)m为何值时,抛物线有最大值?最大值是多少?当x为何值时,y随x的增大而减小?10、如果抛物线与直线交于点,求这条抛物线所对应的二次函数的关系式.练习三函数的图象与性质专业技术资料word资料下载可编辑1、抛物线的开口,对称轴是,顶点坐标是,当x时,y随x的增大而增大,当x时,y随x的增大而减小.2、将抛物线向下平移2个单位得到的抛物线的解析式为,再向上平移3个单位得到的抛物线的解析式为,并分别写出这两个函数的顶点坐标、.3、任给一些不同的实数k,得到不同的抛

7、物线,当k取0,时,关于这些抛物线有以下判断:①开口方向都相同;②对称轴都相同;③形状相同;④都有最底点.其中判断正确的是.4、将抛物线向上平移4个单位后,所得的抛物线是,当x=时,该抛物线有最(填大或小)值,是.5、已知函数的图象关于y轴对称,则m=________;6、二次函数中,若当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值等于.练习四函数的图象与性质1、抛物线,顶点坐标是,当x时,y随x的增大而减小,函数有最值.2、试写出抛物线经过下列平移后得到的抛物线的解析

8、式并写出对称轴和顶点坐标.(1)右移2个单位;(2)左移个单位;(3)先左移1个单位,再右移4个单位.3、请你写出函数和具有的共同性质(至少2个).4、二次函数的图象如图:已知,OA=OC,试求该抛物线的解析式.5、抛物线与x轴交点为A,与y轴交点为B,求A、B两点坐标及⊿AOB的面积.6、二次函数,当自变量x由0增加到2时,函数值增加6.(1)求出此函数关系式.(2)说明函数值y随x值的变化情况.7、已知抛物线的顶点在坐标轴上,求k的值.练习五的图象与性质1、请写出一个二次函数以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。