欢迎来到天天文库
浏览记录
ID:21690445
大小:6.71 MB
页数:135页
时间:2018-10-23
《完整版化工热力学答案冯新宣爱国课后总习题答案详解1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第二章习题解答一、问答题:2-1为什么要研究流体的pVT关系?【参考答案】:流体p-V-T关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。(1)流体的PVT关系可以直接用于设计。(2)利用可测的热力学性质(T,P,V等)计算不可测的热力学性质(H,S,G,等)。只要有了p-V-T关系加上理想气体的,可以解决化工热力学的大多数问题。2-2在p-V图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。【参考答案】:1)超临界流体区的特征是:T>Tc、p
2、>pc。2)临界点C的数学特征:3)饱和液相线是不同压力下产生第一个气泡的那个点的连线;4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。2-3要满足什么条件,气体才能液化?【参考答案】:气体只有在低于Tc条件下才能被液化。2-4不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质
3、因素?【参考答案】:不同。真实气体偏离理想气体程度不仅与T、p有关,而且与每个气体的临界特性有关,即最本质的因素是对比温度、对比压力以及偏心因子,和。2-5偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗?135【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。为了提高计算复杂分子压缩因子的准确度。偏心因子不可以直接测量。偏心因子ω的定义为:,ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并
4、不能直接测量。2-6什么是状态方程的普遍化方法?普遍化方法有哪些类型?【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a,b,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT性质的计算。普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式(普遍化压缩因子图法);(2)以两项virial方程表示的普遍化第二virial系数关系式(普遍化virial系数法)2-7简述三参数对应状态原理与两参数对应状态原理的区别。【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为
5、了提高对比态原理的精度,引入了第三参数如偏心因子ω。三参数对应态原理为:在相同的和下,具有相同值的所有流体具有相同的压缩因子Z,因此它们偏离理想气体的程度相同,即。而两参数对应状态原理为:在相同对比温度、对比压力下,不同气体的对比摩尔体积(或压缩因子z)是近似相等的,即。三参数对应状态原理比两参数对应状态原理精度高得多。2-8总结纯气体和纯液体pVT计算的异同。【参考答案】:由于范德华方程(vdW方程)最大突破在于能同时计算汽、液两相性质,因此,理论上讲,采用基于vdW方程的立方型状态方程能同时将纯气体和纯液体的性质计算出来
6、(最小值是饱和液体摩尔体积、最大值是饱和气体摩尔体积),但事实上计算的纯气体性质误差较小,而纯液体的误差较大。因此,液体的p-V-T关系往往采用专门计算液体体积的公式计算,如修正Rackett方程,它与立方型状态方程相比,既简单精度又高。2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则?【参考答案】:对于混合气体,只要把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,如Tr,pr,ω,并将其代入纯物质的状态方程中,就可以计算混合物的性质了。而计算混合物虚拟特征参数的方法就是混合规则;它是计算混合物性质中最关
7、键的一步。135对于理想气体的混合物,其压力和体积与组成的关系分别表示成Dalton分压定律和Amagat分体积定律。但对于真实气体,由于气体纯组分的非理想性及混合引起的非理想性,使得分压定律和分体积定律无法准确地描述真实气体混合物的p–V-T关系。为了计算真实气体混合物的p–V-T关系,我们就需要引入混合规则的概念。混合规则有虚拟临界参数法和Kay规则、立方型状态方程的混合规则、气体混合物的第二维里系数。2-10状态方程主要有哪些类型?如何选择使用?请给学过的状态方程之精度排个序。【参考答案】:状态方程主要有立方型状态方程
8、(vdW,RK,SRK,PR);多参数状态方程(virial方程);普遍化状态方程(普遍化压缩因子法、普遍化第二virial系数法)、液相的Rackett方程。在使用时:(1)若计算液体体积,则直接使用修正的Rackett方程(2-50)~(2-53),既简单精度又高,不需要用立方型状态方
此文档下载收益归作者所有