欢迎来到天天文库
浏览记录
ID:21634645
大小:3.91 MB
页数:23页
时间:2018-10-23
《2018高考题和高考模拟题数学(文)——专题04数列和不等式分类汇编(解析版)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、word资料下载可编辑4.数列与不等式1.【2018年浙江卷】已知成等比数列,且.若,则A.B.C.D.【答案】B点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如2.【2018年文北京卷】】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率f,则第八个单音频率为A.B.C.D.【
2、答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解.详解:因为每一个单音与前一个单音频率比为,所以,又,则,故选D.专业技术资料word资料下载可编辑点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列.等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.学·科2网3.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为
3、数列的前n项和,则使得成立的n的最小值为________.【答案】27,所以只需研究是否有满足条件的解,此时,,为等差数列项数,且.由得满足条件的最小值为.点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如).4.【2018年浙江卷】已知等比数列{an}的公比q>1,且a3+a4+a5=28,a4+2是a3,a5的等差中项.数列{bn}满足b1=1,数列{(bn+1−bn)an}的前n项和为2n2+n.
4、专业技术资料word资料下载可编辑(Ⅰ)求q的值;(Ⅱ)求数列{bn}的通项公式.【答案】(Ⅰ)(Ⅱ)(Ⅱ)设,数列前n项和为.由解得.由(Ⅰ)可知,所以,故,.设,所以,因此,又,所以.点睛:用错位相减法求和应注意的问题:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“”与“”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.5.【2018年天津卷文】设{an
5、}是等差数列,其前n项和为Sn(n∈N*);{bn}是等比数列,公比大于0,其前n项和为Tn(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(Ⅰ)求Sn和Tn;专业技术资料word资料下载可编辑(Ⅱ)若Sn+(T1+T2+…+Tn)=an+4bn,求正整数n的值.【答案】(Ⅰ),;(Ⅱ)4.详解:(I)设等比数列的公比为q,由b1=1,b3=b2+2,可得.因为,可得,故.所以,.设等差数列的公差为.由,可得.由,可得从而,故,所以,.(II)由(I),有由可得
6、,整理得解得(舍),或.所以n的值为4.点睛:本小题主要考查等差数列、等比数列的通项公式及前n项和公式等基础知识.考查数列求和的基本方法和运算求解能力.学*科..网6.【2018年文北京卷】设是等差数列,且.(Ⅰ)求的通项公式;(Ⅱ)求.【答案】(I)(II)【解析】分析:(1)设公差为,根据题意可列关于的方程组,求解,代入通项公式可得;(2)由(1)可得,进而可利用等比数列求和公式进行求解.详解:(I)设等差数列的公差为,∵,∴,又,∴.专业技术资料word资料下载可编辑∴.(II)由(I)知
7、,∵,∴是以2为首项,2为公比的等比数列.∴.∴点睛:等差数列的通项公式及前项和共涉及五个基本量,知道其中三个可求另外两个,体现了用方程组解决问题的思想.7.【2018年江苏卷】设,对1,2,···,n的一个排列,如果当s8、案】(1)252)n≥5时,详解:解:(1)记为排列abc的逆序数,对1,2,3的所有排列,有,所以.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以专业技术资料word资料下载可编辑.为计算,当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位
8、案】(1)252)n≥5时,详解:解:(1)记为排列abc的逆序数,对1,2,3的所有排列,有,所以.对1,2,3,4的排列,利用已有的1,2,3的排列,将数字4添加进去,4在新排列中的位置只能是最后三个位置.因此,.(2)对一般的n(n≥4)的情形,逆序数为0的排列只有一个:12…n,所以.逆序数为1的排列只能是将排列12…n中的任意相邻两个数字调换位置得到的排列,所以专业技术资料word资料下载可编辑.为计算,当1,2,…,n的排列及其逆序数确定后,将n+1添加进原排列,n+1在新排列中的位
此文档下载收益归作者所有