勾股定理--最短距离问题

勾股定理--最短距离问题

ID:21551850

大小:307.50 KB

页数:10页

时间:2018-10-22

勾股定理--最短距离问题_第1页
勾股定理--最短距离问题_第2页
勾股定理--最短距离问题_第3页
勾股定理--最短距离问题_第4页
勾股定理--最短距离问题_第5页
资源描述:

《勾股定理--最短距离问题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、蚂蚁爬行的最短路径正方体4.如图,一只蚂蚁从正方体的底面A点处沿着表面爬行到点上面的B点处,它爬行的最短路线是()A.A⇒P⇒BB.A⇒Q⇒BC.A⇒R⇒BD.A⇒S⇒B解:根据两点之间线段最短可知选A.故选A.2.如图,边长为1的正方体中,一只蚂蚁从顶点A出发沿着正方体的外表面爬到顶点B的最短距离是.第6题解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB即为最短路线.AB=.8.正方体盒子的棱长为2,BC的中点为M,一只蚂蚁从A点爬行到M点的最短距离为.第7题解:将正方体展开,连接M、D1,根据两点之间线段最短,MD=MC+CD=

2、1+2=3,MD1=.第10页共10页5.如图,点A的正方体左侧面的中心,点B是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A沿其表面爬到点B的最短路程是(  )解:如图,AB=.故选C.9.如图所示一棱长为3cm的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm,假设一只蚂蚁每秒爬行2cm,则它从下底面点A沿表面爬行至侧面的B点,最少要用2.52.5秒钟.解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB==cm;(2)展开底面右面由勾股定理得AB==5cm;

3、所以最短路径长为5cm,用时最少:5÷2=2.5秒.长方体10.(2009•恩施州)如图,长方体的长为15,宽为10,高为20,点B离点C的距离为5,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是。解:将长方体展开,连接A、B,根据两点之间线段最短,AB==25.第10页共10页11.如图,一只蚂蚁从实心长方体的顶点A出发,沿长方体的表面爬到对角顶点C1处(三条棱长如图所示),问怎样走路线最短?最短路线长为.解:正面和上面沿A1B1展开如图,连接AC1,△ABC1是直角三角形,∴AC1=18.(2011•荆州)如图,长方体的

4、底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂奴爬行的最短路径长为13cm.解:∵PA=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.19.如图,一块长方体砖宽AN=5cm,长ND=10cm,CD上的点B距地面的高BD=8cm,地面上A处的一只蚂蚁到B处吃食,需要爬行的最短路径是多少?第10页共10页解:如图1,在砖的侧面展开图2上,连接AB,则AB的长即为A处到B处的最短路程.解:在Rt△ABD中,因为AD=AN+ND=5+10=15,BD=8,所以AB2=AD2+BD2=152

5、+82=289=172.所以AB=17cm.故蚂蚁爬行的最短路径为17cm.49、如图,长方体盒子(无盖)的长、宽、高分别12cm,8cm,30cm.(1)在AB中点C处有一滴蜜糖,一只小虫从D处爬到C处去吃,有无数种走法,则最短路程是多少?(2)此长方体盒子(有盖)能放入木棒的最大长度是多少?12.如图所示:有一个长、宽都是2米,高为3米的长方体纸盒,一只小蚂蚁从A点爬到B点,那么这只蚂蚁爬行的最短路径为米。解:由题意得,路径一:AB==;路径二:AB==5;路径三:AB==;∵>5,∴5米为最短路径.13.如图,直四棱柱侧棱长为4cm,底面

6、是长为5cm宽为3cm的长方形.一只蚂蚁从顶点A出发沿棱柱的表面爬到顶点B.求:(1)蚂蚁经过的最短路程;(2)蚂蚁沿着棱爬行(不能重复爬行同一条棱)的最长路程.第10页共10页解:(1)AB的长就为最短路线.然后根据 若蚂蚁沿侧面爬行,则经过的路程为(cm);若蚂蚁沿侧面和底面爬行,则经过的路程为(cm),或(cm)所以蚂蚁经过的最短路程是cm.(2) 5cm+4cm+5cm+4cm+3cm+4cm+5cm=30cm,最长路程是30cm.15.如图,长方体的长、宽、高分别为6cm,8cm,4cm.一只蚂蚁沿着长方体的表面从点A爬到点B.则蚂蚁

7、爬行的最短路径的长是。解:第一种情况:把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是12cm和6cm,则所走的最短线段是=6cm;第二种情况:把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是10cm和8cm,所以走的最短线段是=cm;第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是14cm和4cm,所以走的最短线段是=2cm;三种情况比较而言,第二种情况最短.51.圆柱形坡璃容器,高18cm,底面周长为60cm,在外侧距下底1cm点S处有一蜘蛛,与蜘蛛相对的圆柱形容器的上口外侧距开

8、口处1cm的点F处有一苍蝇,试求急于捕获苍蝇充饥的蜘蛛所走的最短路线的长度。16.如图是一个三级台阶,它的每一级的长、宽、高分别为20cm、3cm、2

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。