欢迎来到天天文库
浏览记录
ID:21302744
大小:59.00 KB
页数:8页
时间:2018-10-21
《生物强化技术在淀粉废水处理中的应用》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、生物强化技术在淀粉废水处理中的应用:本文通过马铃薯淀粉废水的水质特点分析,结合国内外现有成熟生化处理工艺,针对生物强化技术在生化处理阶段的应用,进行了分析和研究。 关键词:生物强化技术淀粉废水处理应用与研究 在马铃薯淀粉加工过程中,会产生大量的淀粉废水。根据有关调查和统计,按万吨干淀粉生产规模计算,马铃薯淀粉废水排放量平均为7万吨,其中蛋白废水4万吨,淀粉洗涤废水3万吨。淀粉废水中含有大量的悬浮物(杂质)、蛋白质和糖类,污染物浓度变化较大,COD浓度一般在7000-40000mg/l,峰值可达到75000mg/l
2、,SS浓度则高达4000-15000mg/l。 一、国内外同类废水处理研究现状分析 通常,对于淀粉废水这种高浓度有机酸性废水,目前,国内外常见的成熟技术,基本上是采用预处理加生化处理的方法。据调研,包括美国、欧盟、日本等发达国家,淀粉加工废水80%以上是采用以生化法为主体的处理工艺。 生化处理法在国内外污染治理行业中,是降解淀粉废水的不可或缺的一种治理工艺,主要分为好氧生化法和厌氧生化法。好氧生化法包括活性污泥法、生物膜法、生物接触氧化法等,厌氧生物法多采用UASB、ABR等厌氧反应器。在我国大中型淀粉加工企业中,
3、大多已建有不同规模的生化处理装置,且多为厌氧好氧的复合生化处理工艺。 (1)厌氧生化法 厌氧生化法可有效地提高生化池负荷,减小池容,大幅度降低动力消耗,在同样处理能力的情况下,厌氧生化的运转费用只有好氧生化法的一半,同时可回收沼气,因此具有较大的经济效益。但由于其处理不彻底,因此基本不能单独使用。厌氧处理同时还可有效地去除废水中的氨氮。这是一种较好的生物脱氮(有时也采用生物膜系统)、脱磷系统。 (2)好氧生化法 在水污染控制领域,好氧生物处理广泛应用于去除废水中的有机物质。好氧生物处理是在有游离氧(分子氧)存在的
4、条件下,好氧微生物降解有机物,使其稳定、无害化的处理方法。微生物利用废水中存在的有机污染物(以溶解状与胶体状的为主),作为营养源进行好氧代谢。 有机物被微生物摄取后,通过代谢活动,约有三分之一被分解、稳定,并提供其生理活动所需的能量;约有三分之二被转化,合成为新的原生质(细胞质),即进行微生物自身生长繁殖。后者就是废水生物处理中的活性污泥或生物膜的增长部分,通常称其剩余活性污泥或生物膜,又称生物污泥。在废水生物处理过程中,生物污泥经固—液分离后,需进行进一步处理和处置。 好氧生物处理的反应速度较快,所需的反应时间较短
5、,故处理构筑物容积较小。且处理过程中散发的臭气较少。所以,目前对中、低浓度的有机废水基本上采用好氧生物处理法。 近年来,随着对好氧生物反应器的曝气器、填料、菌种培养、曝气池深度等方面的技术改进,涌现出了生物强化反应器、多段接触氧化、改进型SBR反应器等新型技术,使好氧生物处理工艺在废水处理,特别是诸如淀粉废水等高浓度废水处理工程中得到了广泛发展。 二、生化法处理应用中遇到的常见问题 (2)厌氧生化处理 通过废水的预处理,可实现水中高分子有机物的有效去除,但生化阶段负荷仍然很高。实际应用中,一般都考虑厌氧生化处理,
6、对废水中大分子有机物进行进一步的去除,以降低后续好氧生化的主体工艺负荷。 实际运行结果表明,在采用预处理后,进入生化阶段,废水中所含有机物质的分子量和分子键已明显降低,在适宜的反应条件下,厌氧生化确实可以达到较好的处理效果,一般,有机物的综合去除效率可达到80%以上,可为后续处理提供了有利条件。 但是,在我国北方地区,由于马铃薯作物生长区域特殊的气候条件,作物成熟后,进入淀粉加工周期时,大多已处于秋末初冬季节,气候比较寒冷,地表温度一般已降至0℃左右,个别地区和时段夜间最低温度可达到-10~-20℃,为厌氧处理带来了
7、很大难度。 在厌氧状态下,厌氧微生物活跃性较低,需要提高温度以保证其活性。经实际运行监测,厌氧系统一般需要保证在10℃以上,才能保证厌氧微生物菌种活性,并取得较好的处理效果。 由于马铃薯淀粉废水水量较大,厌氧系统停留时间较长,且废水流速较低。一般来说,厌氧工序停留时间达到250小时以上,才能基本保证50%以上的有机物去除效果。停留时间650小时,COD去除率也仅有85%左右。这就为厌氧系统的加温带来了很大难度。实际运行过程中,研究还发现,为保证厌氧系统的正常运行,必须设置加温装置,而通过成本核算,厌氧系统加温的费用,
8、可以达到整个污水处理系统整体运行费用的60%以上,给废水处理带来了巨大压力。 (2)好氧生化系统 好氧生化系统,一般采用生物接触氧化池等成熟生化工艺,以保证稳定的处理效果,控制处理单元建设成本和运行成本。 以生物接触氧化池为例,实际运行过程中,研究发现,由于厌氧处理环节的效果并不明显,且相当不稳定。在生物接触氧
此文档下载收益归作者所有