资源描述:
《关于连续型条件属性的模糊规则约简算法》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、关于连续型条件属性的模糊规则约简算法连续型条件属性的模糊规则约简算法如下文粗糙集理论[1]是一种研究不精确、不确定性知识的数学工具,其主要思想和优点就是在保持分类能力不变的前提下,能够通过知识约简导出问题的决策或分类规则。属性约简就是该理论中一个非常重要的概念,它反映了一个决策表的本质信息,现已得到广泛的应用[2]。在实际情况中,大多数数据集的属性值是连续型的。这些连续型数据大多具有较强的模糊性,概念之间的界限并不十分明确。由于传统粗糙集理论十分适合处理离散域属性决策表,对于连续域属性决策表的处理能力非常有限,这就大大限
2、制了它的应用。如果把粗糙集理论应用于连续性属性,那么在使用该理论之前就必须对连续属性进行离散化。然而,离散化后的属性值没有保留属性值在实数值上存在的差异,这将导致某种程度的信息损失。所以,粗糙集理论需要与其他能够处理不精确或不确定问题的理论结合起来,以扩展其应用范围。模糊集理论也是一种用于在建模中针对一些实验数据中不确定性和模糊性问题的有力工具。其优点在于:模糊集理论提供了系统的、以语言表示这类信息的计算工具,通过使用由隶属函数表示的语言变量,它还可以进行数值计算。合理选择模糊规则是模糊推理系统的关键因素,它可以有效地对
3、特定应用领域中的人类专门知识进行建模。Pa}是条件属性集合,每个属性都是连续型属性;D={d}是决策属性。对于?c?j∈C(j=1,2,,m),都可以使用隶属度函数将它的连续型属性值转换为模糊值。用I?j?k表示连续属性c?j的第k个模糊区间,m?j表示c?j的模糊区间个数,μ?kij表示对象u?i(i=1,2,,n)在模糊区间I?j?k的隶属度,vij表示u?i在c?j的属性值,则vij可表示如下:vij=μ?1ij/I?j?1+μ?2ij/I?j?2++μ??m??j?ij/I??m
4、??j??j(1)定义2对于连续域决策表S=〈U,C,D,V,f〉,对象u?i和u?s在连续型属性c?j的相似度定义如下:μc??j(u?i,u?s)=1-1m?j?m?jt=1
5、μ?tij-μ?1sj
6、(2)定义3对于连续域决策表S=〈U,C,D,V,f〉,对象u?i在连续型属性c?j上的相似类可以定义如下:sim?βc??j(u?i)={u?t
7、μc??j(u?i,u?t)≥β,t=1,2,,n}(3)其中:β为所给的相似度阈值。定义4对于连续域决策表S=〈
8、U,C,D,V,f〉,连续型属性c?j在U上划分所形成的相似类集组成的向量定义如下:simClassVector(c?j)=(sim?βc??j(u?i)
9、i=1,2,,n)(4)2数字特征向量及其相似矩阵在决策表中,每个属性可以找到一个表示其特性的向量,这个向量可以称为属性的数字特征向量。定义5对于连续域决策表S=〈U,C,D,V,f〉,假设连续型属性c?i在U上划分所形成的相似类集组成的向量定义为simClassVector(c?j)=(sim?βc??j(u?i)
10、i=1,2,,n),则连续属性
11、c?i的数字特征向量可定义为DCV(c?i)=(λit
12、λit=card(sim?βc??i(u?t)),t=1,2,,n)(5) 模糊集理论的基础是模糊关系,最简单的表现方法就是相似关系。相似关系是指满足自反性和对称性的二元模糊关系。众多相似关系可以构造成相似矩阵,相似矩阵的传递闭包是模糊等价关系,其每个λ截集都是通常意义下的等价关系。定义6对于连续域决策表S=〈U,C,D,V,f〉,连续属性c?i(i=1,2,,m)的数字特征向量DCV(c?i),连续属性间的相似矩
13、阵定义为[R]=(rij)mn。其中[R]中每个元素定义为rij=1-δ?nk=1
14、λik-λjk
15、(6)其中:i,j=1,2,,m;0<δ<1为一个常数;m为条件属性的总个数。3新的属性约简算法本文所提出的新的属性约简算法适用于条件属性是连续型的决策表,其描述如下:输入:连续域决策表S=〈U,C,D,V,f〉、相似度阈值β、相似矩阵元素常量系数δ、模糊等价矩阵的截集阈值λ。输出:满意的主观条件属性约简集和模糊规则集。a)
16、将决策表中每个属性的连续值使用三角隶属度函数转换为模糊值;b)根据β以及式(1)~(4)计算各个条件属性的数字特征向量;c)通过HCM聚类方法获得数据集之间的关系;虚拟机技术在校园网中的应用,所以可以随意修改虚拟机的设置,而不用担心对物理机造成损失。虚拟机,就是虚拟出来的电脑,这个虚拟出来的电脑和真实的电脑