欢迎来到天天文库
浏览记录
ID:21237536
大小:327.00 KB
页数:14页
时间:2018-10-20
《全国各地2016年中考数学试题分类汇编第2期专题9一元二次方程及其应用含解析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、一元二次方程及其应用一、选择题1.(2016·湖北随州·3分)随州市尚市“桃花节”观赏人数逐年增加,据有关部门统计,2014年约为20万人次,2016年约为28.8万人次,设观赏人数年均增长率为x,则下列方程中正确的是( )A.20(1+2x)=28.8B.28.8(1+x)2=20C.20(1+x)2=28.8D.20+20(1+x)+20(1+x)2=28.8【考点】由实际问题抽象出一元二次方程.【分析】设这两年观赏人数年均增长率为x,根据“2014年约为20万人次,2016年约为28.8万人
2、次”,可得出方程.【解答】解:设观赏人数年均增长率为x,那么依题意得20(1+x)2=28.8,故选C.2.(2016·江西·3分)设α、β是一元二次方程x2+2x﹣1=0的两个根,则αβ的值是( )A.2B.1C.﹣2D.﹣1【考点】根与系数的关系.【分析】根据α、β是一元二次方程x2+2x﹣1=0的两个根,由根与系数的关系可以求得αβ的值,本题得以解决.【解答】解:∵α、β是一元二次方程x2+2x﹣1=0的两个根,∴αβ=,故选D.3.(2016·辽宁丹东·3分)某公司今年4月份营业额为60万
3、元,6月份营业额达到100万元,设该公司5、6两个月营业额的月均增长率为x,则可列方程为 60(1+x)2=100 .【考点】由实际问题抽象出一元二次方程.【分析】设平均每月的增长率为x,根据4月份的营业额为60万元,6月份的营业额为100万元,分别表示出5,6月的营业额,即可列出方程.【解答】解:设平均每月的增长率为x,根据题意可得:60(1+x)2=100.故答案为:60(1+x)2=100.4.(2016·四川攀枝花)若x=﹣2是关于x的一元二次方程x2+ax﹣a2=0的一个根,则a的值为(
4、 )A.﹣1或4B.﹣1或﹣4C.1或﹣4D.1或4【考点】一元二次方程的解.【分析】把x=﹣2代入已知方程,列出关于a的新方程,通过解新方程可以求得a的值.【解答】解:根据题意,将x=﹣2代入方程x2+ax﹣a2=0,得:4﹣3a﹣a2=0,即a2+3a﹣4=0,左边因式分解得:(a﹣1)(a+4)=0,∴a﹣1=0,或a+4=0,14解得:a=1或﹣4,故选:C.【点评】本题考查了一元二次方程的解的定义.能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.又因为只含有一个未知数的方程的解
5、也叫做这个方程的根,所以,一元二次方程的解也称为一元二次方程的根.5.(2016·广西桂林·3分)若关于x的一元二次方程方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )A.k<5B.k<5,且k≠1C.k≤5,且k≠1D.k>5【考点】根的判别式;一元二次方程的定义.【分析】根据方程为一元二次方程且有两个不相等的实数根,结合一元二次方程的定义以及根的判别式即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵关于x的一元二次方程方程(k﹣1)x2+4x
6、+1=0有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.6.(2016·贵州安顺·3分)已知命题“关于x的一元二次方程x2+bx+1=0,必有实数解”是假命题,则在下列选项中,b的值可以是( )A.b=﹣3B.b=﹣2C.b=﹣1D.b=2【分析】根据判别式的意义,当b=﹣1时△<0,从而可判断原命题为是假命题.【解答】解:△=b2﹣4,当b=﹣1时,△<0,方程没有实数解,所以b取﹣1可作为判断命题“关于x的一元二次方程x2+bx+1=0,必有实数解”是假命题的反例.故选C.【点评】
7、本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.7.(2016广西南宁3分)二次函数y=ax2+bx+c(a≠0)和正比例函数y=x的图象如图所示,则方程ax2+(b﹣)x+c=0(a≠0)的两根之和( )A.大于
8、0B.等于0C.小于0D.不能确定【考点】抛物线与x轴的交点.【分析】设ax2+bx+c=0(a≠0)的两根为x1,x214,由二次函数的图象可知x1+x2>0,a>0,设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b再根据根与系数的关系即可得出结论.【解答】解:设ax2+bx+c=0(a≠0)的两根为x1,x2,∵由二次函数的图象可知x1+x2>0,a>0,∴﹣>0.设方程ax2+(b﹣)x+c=0(a≠0)的两根为a,b,则a+b=﹣=﹣+,∵a>0,∴>
此文档下载收益归作者所有