spss多元线性回归分析实例操作步骤

spss多元线性回归分析实例操作步骤

ID:21178499

大小:776.50 KB

页数:12页

时间:2018-10-20

spss多元线性回归分析实例操作步骤_第1页
spss多元线性回归分析实例操作步骤_第2页
spss多元线性回归分析实例操作步骤_第3页
spss多元线性回归分析实例操作步骤_第4页
spss多元线性回归分析实例操作步骤_第5页
spss多元线性回归分析实例操作步骤_第6页
spss多元线性回归分析实例操作步骤_第7页
spss多元线性回归分析实例操作步骤_第8页
spss多元线性回归分析实例操作步骤_第9页
spss多元线性回归分析实例操作步骤_第10页
资源描述:

《spss多元线性回归分析实例操作步骤》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、SPSS统计分析多元线性回归分析方法操作与分析实验目的:引入1998~2008年上海市城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率和房屋空置率作为变量,来研究上海房价的变动因素。实验变量:以年份、商品房平均售价(元/平方米)、上海市城市人口密度(人/平方公里)、城市居民人均可支配收入(元)、五年以上平均年贷款利率(%)和房屋空置率(%)作为变量。实验方法:多元线性回归分析法软件:spss19.0操作过程:第一步:导入Excel数据文件   1.opendatadocument——opendata——open;2.Openingexceldatasource——OK.第

2、二步:1.在最上面菜单里面选中Analyze——Regression——Linear ,Dependent(因变量)选择商品房平均售价,Independents(自变量)选择城市人口密度、城市居民人均可支配收入、五年以上平均年贷款利率、房屋空置率;Method选择Stepwise.进入如下界面:2.点击右侧Statistics,勾选RegressionCoefficients(回归系数)选项组中的Estimates;勾选Residuals(残差)选项组中的Durbin-Watson、Casewisediagnostics默认;接着选择Modelfit、Collinearitydiag

3、notics;点击Continue.3.点击右侧Plots,选择*ZPRED(标准化预测值)作为纵轴变量,选择DEPENDNT(因变量)作为横轴变量;勾选选项组中的StandardizedResidualPlots(标准化残差图)中的Histogram、Normalprobabilityplot;点击Continue.4.点击右侧Save,勾选PredictedVaniues(预测值)和Residuals(残差)选项组中的Unstandardized;点击Continue.5.点击右侧Options,默认,点击Continue.6.返回主对话框,单击OK.输出结果分析:1.引入/剔除

4、变量表VariablesEntered/RemovedaModelVariablesEnteredVariablesRemovedMethod1城市人口密度(人/平方公里).Stepwise(Criteria:Probability-of-F-to-enter<=.050,Probability-of-F-to-remove>=.100).2城市居民人均可支配收入(元).Stepwise(Criteria:Probability-of-F-to-enter<=.050,Probability-of-F-to-remove>=.100).a.DependentVariable:商品房平

5、均售价(元/平方米)该表显示模型最先引入变量城市人口密度(人/平方公里),第二个引入模型的是变量城市居民人均可支配收入(元),没有变量被剔除。1.模型汇总ModelSummarycModelRRSquareAdjustedRSquareStd.ErroroftheEstimateDurbin-Watson11.000a1.0001.00035.18721.000b1.0001.00028.3512.845a.Predictors:(Constant),城市人口密度(人/平方公里)b.Predictors:(Constant),城市人口密度(人/平方公里),城市居民人均可支配收入(元)

6、c.DependentVariable:商品房平均售价(元/平方米)该表显示模型的拟合情况。从表中可以看出,模型的复相关系数(R)为1.000,判定系数(RSquare)为1.000,调整判定系数(AdjustedRSquare)为1.000,估计值的标准误差(Std.ErroroftheEstimate)为28.351,Durbin-Watson检验统计量为2.845,当DW≈2时说明残差独立。1.方差分析表ANOVAcModelSumofSquaresdfMeanSquareFSig.1Regression38305583.506138305583.50630938.620.00

7、0aResidual11143.03991238.115Total38316726.545102Regression38310296.528219155148.26423832.156.000bResidual6430.0188803.752Total38316726.54510a.Predictors:(Constant),城市人口密度(人/平方公里)b.Predictors:(Constant),城市人口密度(人/平方公里),城市居民人均可支配收入(元

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。