数学思维方法

数学思维方法

ID:21177496

大小:49.50 KB

页数:3页

时间:2018-10-20

数学思维方法  _第1页
数学思维方法  _第2页
数学思维方法  _第3页
资源描述:

《数学思维方法 》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、数学思维方法[摘要]数学思维和数学思维方法,是数学学习过程中必须接触的内容,人们在学习数学的过程中,能力的提高主要在于对数学思维(思想)方法的掌握。  [关键词]抽象性严密性确定性综合法分析法符号概念    关于思维,心理学给出的定义是:思维是人脑借助于语言对客观事物的本质及其规律的间接与概括的反应,数学思维既符合人类一般思维的规律,又有它自己的规律。一般来说,数学思维特征主要表现在:高度的抽象性、严谨性、严密的逻辑性以及思维结果的确定性。  数学思维的抽象性表现在在数学思维的过程中,把思维对象某些非本质的(对数学

2、本身来说)东西舍弃,把思维对象抽象化为一定的数量关系、空间形式或逻辑关系,然后再把这些特定的数量关系表示成为一般的符号形式。数学思维的抽象性还表现在它不仅仅停留在一次抽象的基础上,通常的数学符号形式可能经过了多次的抽象。与人类的所有思维形式相比,这种完全人为创造的数学语言,是数学思维高度抽象化的基础。  数学思维的严谨性,是指数学思维在发生、发展和表述的过程中,完全依据一种形式化的严密过程,这种过程中不容许出现一丝差错,也不允许有对与错之间的状况。正是数学思维的这种形式化的严谨性,使数学成为人类所有科学形式的最终表

3、达手段。  数学思维具有严密的逻辑性,我们知道,排中律、同一律、矛盾律和充足理由律,是逻辑思维的基本规律,它们是客观事物和现象之间相对稳定性在思维中的反应,它是保证人们正确认识客观世界和正确表达思维的必要条件。正确的思维应该是确定的、无矛盾的、前后一贯的、论据充足的。不然的话,思维就将陷入混乱。在数学思维的过程中,如果违背了这些基本规律,就会产生逻辑错误,论证就得不到正确的结论。因此,数学思维中必须遵守逻辑思维的基本规律。  数学思维结果的确定性,是指在数学思维的过程中,其结果是唯一的。我们知道在数学领域中,每一个

4、命题的结果都是唯一的,不可能有两种不同的结果,也就是说任何一个数学命题的结果在对与错之间二者必据其一。  数学思维的方法是数学的符号、概念、语言按照数学特定的规律、法则,运用数学思维在数学领域中形成的一种方法。数学思维方法具有一般科学的方法论特征,又有自身的特殊形式。  按照数学思维方法运用的领域、表现形式不同可以把数学思维方法分为宏观思维方法和微观思维方法,按照数学思维的逻辑形式不同,可分为逻辑思维方法和非逻辑思维方法,按照数学思维解决问题的不同方式,可以分为程式化思维和发现性思维,按照数学教育的阶段或领域的不同

5、,可以分为不同的带有专业特征的思维方法。  宏观数学思维方法,也称基本或重大的数学思维方法,是指对整个数学领域产生重大影响的数学思维方法,如公理化思维方法、变量分析思维方法等。这些思维方法曾极大地推动了整个数学的发展。微观数学思维方法,是指对某个数学分支发挥作用或由某些数学家群体使用的数学思维方法,如代数学的一些思维方法、几何学的一些思维方法等。微观数学思维方法还包括数学问题解决和数学问题发现的思维方法。主要包括最基本、最常用的数学思维方法:分析法、综合法、归纳法、演绎。分析法是从问题的结论开始,逐步推出已知条件或

6、已确认成立的事实,从而断定命题成立的方法。综合法是从问题的条件开始逐步推出命题的结论的方法。演绎推理是按照严密的逻辑法则,采用由普遍到个别,由一般到特殊的推理、论证方法,归纳推理是从个别到一般的推理方法,归纳推理试图从个别的例子中得出一般的规律,采用由个别到普遍、由特殊到一般的方法进行推理论证。在归纳推理中,需要注意的是如果前提为真,结论不一定为真。通常情况下,由归纳推理得到的结论还需要用科学的数学方法进行论证。  逻辑思维方法,主要是指按照形式逻辑的方式展开数学思维方法。数学的定理、证明及理论构造都是严格按照形式

7、逻辑的思维方式展开和构造的,可以说数学的结果都是按照形式逻辑来表现的。数学思维的非逻辑方法,是指在数学思维中应用的猜想、直觉、灵感、现象等思维方式。这些思维形式经常地、大量地出现在解决数学问题过程中。随着数学的发展,人们越来越认识到非逻辑思维方法在数学学习和数学教育中有着及其重要的作用。  数学思维的程式化方法,是指按照数学习惯的、原有的方式来解决问题。在数学学习和解决问题的过程中这种方式表现为规范的逻辑演绎方式。数学的发现性思维,又称之为创新性思维。这种思维方式的特点是它不遵守程式化的逻辑演绎的思维方式,而选择带

8、有个人特性、主观色彩、独立特性的思维方式。现代数学教育理论十分重视这种与传统的数学思维相区别的思维方式。  如果按照数学教育的阶段和领域不同还可将其分为不同的带有专业特征的思维方法,如按数学分支的差异,可将其分为几何思维方法、代数思维方法、微积分思维方法、概率统计思维方法等。尽管现代数学的发展使某些数学分支之间的界线变得模糊,但对于初等数学或一般高等数学阶段

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。