logistic回归模型

logistic回归模型

ID:21140131

大小:736.00 KB

页数:19页

时间:2018-10-19

logistic回归模型_第1页
logistic回归模型_第2页
logistic回归模型_第3页
logistic回归模型_第4页
logistic回归模型_第5页
资源描述:

《logistic回归模型》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Logistic回归模型1Logistic回归模型的基本知识1.1Logistic模型简介主要应用在研究某些现象发生的概率,比如股票涨还是跌,公司成功或失败的概率,以及讨论概率与那些因素有关。显然作为概率值,一定有,因此很难用线性模型描述概率与自变量的关系,另外如果接近两个极端值,此时一般方法难以较好地反映p的微小变化。为此在构建与自变量关系的模型时,变换一下思路,不直接研究,而是研究的一个严格单调函数,并要求在接近两端值时对其微小变化很敏感。于是Logit变换被提出来:(1)其中当从时,从,这个变化范

2、围在模型数据处理上带来很大的方便,解决了上述面临的难题。另外从函数的变形可得如下等价的公式:(2)模型(2)的基本要求是,因变量(y)是个二元变量,仅取0或1两个值,而因变量取1的概率就是模型要研究的对象。而,其中表示影响的第个因素,它可以是定性变量也可以是定量变量,。为此模型(2)可以表述成:(3)显然,故上述模型表明是的线性函数。此时我们称满足上面条件的回归方程为Logistic线性回归。Logistic线性回归的主要问题是不能用普通的回归方式来分析模型,一方面离散变量的误差形式服从伯努利分布而非正

3、态分布,即没有正态性假设前提;二是二值变量方差不是常数,有异方差性。不同于多元线性回归的最小二乘估计法则(残差平方和最小),Logistic变换的非线性特征采用极大似然估计的方法寻求最佳的回归系数。因此评价模型的拟合度的标准变为似然值而非离差平方和。定义1称事件发生与不发生的概率比为优势比(比数比oddsratio简称OR),形式上表示为OR=(4)定义2Logistic回归模型是通过极大似然估计法得到的,故模型好坏的评价准则有似然值来表征,称-2为估计值的拟合似然度,该值越小越好,如果模型完全拟合,则

4、似然值为1,而拟合似然度达到最小,值为0。其中表示的对数似然函数值。定义3记为估计值的方差-协方差矩阵,为的标准差矩阵,则称(5)为的Wald统计量,在大样本时,近似服从分布,通过它实现对系数的显著性检验。定义4假定方程中只有常数项,即各变量的系数均为0,此时称(6)为方程的显著性似然统计量,在大样本时,近似服从分布。1.2Logistic模型的分类及主要问题根据研究设计的不同,Logistic回归通常分为成组资料的非条件Logistic回归和配对资料的条件Logistic回归两种大类。还兼具两分类和多

5、分类之分,分组与未分组之分,有序与无序变量之分。具体如下:两分类非条件Logistic回归:分组数据的Logistic回归,未分组数据的Logistic回归;多分类非条件Logistic回归:无序变量Logistic回归,无序变量Logistic回归;条件Logistic回归:1:1型、1:M型和M:N型Logistic回归。关于Logistic回归,主要研究的内容包括:1.模型参数的估计及检验2.变量模型化及自变量的选择3.模型评价和预测问题4.模型应用2Logistic模型的参数估计及算法实现2.1

6、两分类分组数据非条件Logistic回归因变量(反应变量)分为两类,取值有两种,设事件发生记为y=1,不发生记为y=0,设自变量是分组数据,取有限的几个值;研究事件发生的概率与自变量的关系,其Logistic回归方程为:或例2.1.1分组数据[1]在一次住房展销会上,与房地产商签订初步购房意向书的有n=325人,在随后的3个月时间内,只有一部分顾客购买了房屋。购买房屋的顾客记为1,否则记为0。以顾客的年家庭收入(万元)作为自变量,对数据统计后如表2.1.1所示,建立Logistic回归模型。表2.1.1

7、购房分组数据序号年家庭收入X(万元)签订意向人数实际购买人数11.525822.5321333.5582644.5522255.5432066.5392277.5281688.5211299.51510例2.1.2药物疗效数据[2]为考察某药物疗效,随机抽取220例病人并分配到治疗组和对照组,治疗组采用治疗药物,对照组采用安慰剂。治疗一段时间后观察病人的疗效,得到表2.1.2数据。设y为疗效指标(y=1有效,y=0无效),为治疗组指标(1为治疗组,0为对照组),为年龄组指标(1为>45岁,0为其他)。表

8、2.1.2药物疗效数据序号治疗分组年龄分组有疗效无效合计111321850210402060301213152400184058上述两个例子数据都是经过统计加工后的分组数据,对此类数据进行Logistic回归,首先要明确应变量对应事件的发生概率如何确定和进行Logit变换,其次才能建立Logistic回归。为便于数据处理,我们将此类数据的格式作个约定,排列格式为(组序号,自变量,该组事件发生数,该组总例数)。表2.1.3分组数据的标准格式序

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。