欢迎来到天天文库
浏览记录
ID:21134680
大小:137.00 KB
页数:8页
时间:2018-10-19
《高中必修一函数的奇偶性详细讲解及练习(详细答案)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、函数的单调性和奇偶性例1 (1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间.解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数.评析 函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上.(2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析 要充分
2、运用函数的单调性是以对称轴为界线这一特征.解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.评析 这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2 判断下列函数的奇偶性:(1)f(x)=-(2)f(x)=(x-1).解:(1)f(x)的定义域为R.因为f(-x)=|-x+1|-|
3、-x-1| =|x-1|-|x+1|=-f(x).所以f(x)为奇函数.(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数.评析 用定义判断函数的奇偶性的步骤与方法如下:8(1)求函数的定义域,并考查定义域是否关于原点对称.(2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性.例3 已知函数f(x)=.(1)判断f(x)的奇偶
4、性.(2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论.解:因为f(x)的定义域为R,又f(-x)===f(x),所以f(x)为偶函数.(2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数.其证明:取x1<x2<0,f(x1)-f(x2)=-==.因为x1<x2<0,所以x2-x1>0,x1+x2<0,x21+1>0,x22+1>0,得 f(x1)-f(x2)<0,即f(x1)<f(x2).所以f(x)在(-∞,0)上为增函数.评析 奇函数在(a
5、,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反.例4 已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.分析 根据函数的增减性的定义,可以任取x1<x2<0,进而判定F(x1)-F(x2)=-=的正负.为此,需分别判定f(x1)、f(x2)与f(x2)的正负,而这可以从已条件中推出.解:任取x1、x2∈(-∞,0)且x1<x2,则有-x1>-x2>0.8∵y=f(x)在(0,+∞)上是增函数,且f(
6、x)<0,∴f(-x2)<f(-x1)<0. ①又∵f(x)是奇函数,∴f(-x2)=-f(x2),f(-x1)=-f(x1) ②由①、②得 f(x2)>f(x1)>0.于是F(x1)-F(x2)=>0,即F(x1)>F(x2),所以F(x)=在(-∞,0)上是减函数.评析 本题最容易发生的错误,是受已知条件的影响,一开始就在(0,+∞)内任取x1<x2,展开证明.这样就不能保证-x1,-x2,在(-∞,0)内的任意性而导致错误.避免错误的方法是:要明确证明的目标,有针对性地展开证明活动.例5 讨
7、论函数f(x)=(a≠0)在区间(-1,1)内的单调性.分析 根据函数的单调性定义求解.解:设-1<x1<x2<1,则f(x1)-f(x2)=- =∵x1,x2∈(-1,1),且x1<x2,∴x1-x2<0,1+x1x2>0,(1-x21)(1-x22)>0于是,当a>0时,f(x1)<f(x2);当a<0时,f(x1)>f(x2).故当a>0时,函数在(-1,1)上是增函数;当a<0时,函数在(-1,1)上为减函数.评析 根据定义讨论(或证明)函数的单调性的一般步骤是:(1)设x1、x2是给定区间内任意两个值,且x
8、1<x2;(2)作差f(x1)-f(x2),并将此差式变形;(3)判断f(x1)-f(x2)的正负,从而确定函数的单调性.例6 求证:f(x)=x+(k>0)在区间(0,k]上单调递减.解:设0<x1<x2≤k,则8f(x1)-f(x2)=x1+-
此文档下载收益归作者所有