1.4 角平分线(1)性质定理与逆定理

1.4 角平分线(1)性质定理与逆定理

ID:21117822

大小:537.50 KB

页数:14页

时间:2018-10-19

1.4 角平分线(1)性质定理与逆定理_第1页
1.4 角平分线(1)性质定理与逆定理_第2页
1.4 角平分线(1)性质定理与逆定理_第3页
1.4 角平分线(1)性质定理与逆定理_第4页
1.4 角平分线(1)性质定理与逆定理_第5页
资源描述:

《1.4 角平分线(1)性质定理与逆定理》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、4.角平分线(1)性质定理与逆定理驶向胜利的彼岸角平分线你还能利用折纸的方法得到角平分线及角平分线上的点吗?回顾思考已知:如图,OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E.求证:PD=PE.而△OPD≌△OPE的条件由已知易知它满足公理(AAS).故结论可证.老师期望:你能写出规范的证明过程.分析:要证明PD=PE,只要证明它们所在的△OPD≌△OPE,你还记得角平分线上的点有什么性质吗?角平分线上的点到这个角的两边距离相等.你能证明这一结论吗?OCB1A2PDE驶向胜

2、利的彼岸几何的三种语言定理角平分线上的点到这个角的两边距离相等.老师提示:这个结论是经常用来证明两条线段相等的根据之一.开启智慧如图,∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥oB,垂足分别是D,E(已知)∴PD=PE(角平分线上的点到这个角的两边距离相等).OCB1A2PDE进步的标志′驶向胜利的彼岸思考分析你能写出“定理角平分线上的点到这个角的两边距离相等”的逆命题吗?逆命题在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.它是真命题吗?如果是.请你证明它.已知:如图,PD

3、=PE,PD⊥OA,PE⊥OB,垂足分别是D,E.求证:点P在∠AOB的平分线上.分析:要证明点P在∠AOB的平分线上,可以先作出过点P的射线OC,然后证明∠1=∠2.老师期望:你能写出规范的证明过程.OCB1A2PDE驶向胜利的彼岸逆定理我能行1逆定理在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上.如图,∵PA=PB,PD⊥OA,PE⊥OB,垂足分别是D,E(已知),∴点P在∠AOB的平分线上.(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上).老师提示:这个结论又是经常用来证明点

4、在直线上(或直线经过某一点)的根据之一.从这个结果出发,你还能联想到什么?OBAC12PDE尺规作图做一做1已知:∠AOB,如图.求作:射线OC,使∠AOC=∠BOC.作法:用尺规作角的平分线.1.在OAT和OB上分别截取OD,OE,使OD=OE.2.分别以点D和E为圆心,以大于DE/2长为半径作弧,两弧在∠AOB内交于点C..3.作射线OC.请你说明OC为什么是∠AOB的平分线,并与同伴进行交流.老师提示:作角平分线是最基本的尺规作图,这种方法要确实掌握.ABOC则射线OC就是∠AOB的平分线.DE挑战自我随

5、堂练习1驶向胜利的彼岸如图,AD,AE分别是△ABC中∠A的内角平分线外角平分线,它们有什么关系?老师期望:你能说出结论并能证明它.EDABCF梦想成真随堂练习22.如图,一目标在A区,到公路,铁路距离相等,离公路与铁路的交叉处500m.在图上标出它的位置(比例尺1:20000).A区回味无穷定理角平分线上的点到这个角的两边距离相等.∵OC是∠AOB的平分线,P是OC上任意一点,PD⊥OA,PE⊥OB,垂足分别是D,E(已知)∴PD=PE(角平分线上的点到这个角的两边距离相等).逆定理在一个角的内部,且到角的两

6、边距离相等的点,在这个角的平分线上.∵PA=PB,PD⊥OA,PE⊥OB,垂足分别是D,E(已知),∴点P在∠AOB的平分线上.(在一个角的内部,且到角的两边距离相等的点,在这个角的平分线上).用尺规作角的平分线.邻补角的角平分线之间的关系.小结拓展OCB1A2PDE知识的升华独立作业P9习题1.81,2,3题.祝你成功!习题1.8独立作业1驶向胜利的彼岸1.利用尺规作出三角形三个内角的平分线.老师期望:先分别作出不同形状的三角形,再按要求去作图.你发现了什么?习题1.8独立作业2驶向胜利的彼岸2.如图,求作一

7、点P,使PC=PD,并且点P到∠AOB的两边的距离相等.老师期望:养成用数学解释生活的习惯.C●D●ABO习题1.8独立作业3驶向胜利的彼岸3.已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB,DF⊥AC,垂足分别是E,F.求证:EB=FC.老师期望:做完题目后,一定要“悟”到点东西,纳入到自己的认知结构中去.BAEDCF结束寄语严格性之于数学家,犹如道德之于人.证明的规范性在于:条理清晰,因果相应,言必有据.这是初学证明者谨记和遵循的原则.下课了!再见

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。