欢迎来到天天文库
浏览记录
ID:21091391
大小:114.00 KB
页数:10页
时间:2018-10-19
《《分数混合运算》知识点复习与随堂练习教师稿》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、北师大六年级上册第二单元分数混合运算教学目标1、体会分数混合运算的运算顺序和整数是一样的,会计算分数混合运算2、利用分数加、减、乘、除法解决日常生活中的实际问题3、掌握分数应用题的相关知识及解题方法一、分数混合运算的运算顺序运算顺序和整数混合运算是一样的。先×÷后+-,有括号的先算括号里面的,同级的运算符从左至右运算。一般:①除以一个数等于乘以这个数的倒数。所以一般第一步先化÷为×。②有括号的,先算括号里面的,简算中注意打开括号用分配律。③+-注意通分。④×注意分子和分母“逐个”约分。二、计算例1、×÷×例2、解方程例3、列式计算1减去与的和,
2、所得的差除以,商是多少?减的差乘一个数得,求这个数。加上除以的商,得到的和再乘,积是几?【知识点:解决问题】对应数量÷对应分率=单位“1”求一个数的几分之几是多少,用乘法计算。已知一个数的几分之几是多少,求这个数,用除法计算,还可以用方程解答。例4、1、小刚家九月份用水12吨,比八月份节约了 ,八月份用水多少吨? 2、胜利路长1千米,延安路是胜利路长度的 倍。延安路比胜利路长多少千米?针对练习41、六年级学生参加植树劳动,男生植了160棵,女生植的树比男生的多5棵。女生植树多少棵?2、一个食堂原来每月用煤320千克,现在每月比原来节约,这个
3、食堂现在每月用煤多少千克?3、学校要买些桌椅。已知一把椅子的价钱是48元,一张桌子的价钱比一把椅子多,一张桌子多少钱?4、一项工程,甲独做10天完成,乙独做15天完成。现在甲做4天,乙做3天,分别完成这项工程的几分之几?拓展知识点:(一)分数应用题:分数应用题主要讨论的是以下三者之间的关系:(1)分率:表示一个数是另一个数的几分之几,这几分之几通常称为分率。(2)标准量:解答分数应用题时,通常把题目中作为单位“1”的那个数,称为标准量。(3)比较量:解答分数应用题时,通常把题目中同标准量比较的那个数,称为比较量。(二)分数应用题的分类1、求一个
4、数的几分之几是多少。这类问题特点是已知一个看作单位“1”的数,求它的几分之几是多少,解这类应用题用乘法。即反映的是整体与部分之间关系的应用题,基本的数量关系是:整体量×分率=分率的对应的部分量;或已知一个看作单位“1”的数,另一个数占它的几分之几,求另一个数,即反映的是甲乙两数之间关系的应用题,基本的数量关系是:标准量×分率=分率的对应的比较量。(1)求一个数的几分之几是多少:标准量×(分率)=是多少(分率对应的比较量)。(2)求比一个数多几分之几多多少:标准量×(分率)=多多少(分率对应的比较量)。(3)求比一个数多几分之几是多少:标准量×(
5、1+)(分率)=是多少(分率对应的比较量)。(4)求比一个数少几分之几少多少:标准量×(分率)=少多少(分率对应的比较量)。(5)求比一个数少几分之几是多少:标准量×(1-)(分率)=是多少(分率对应的比较量)。2、求一个数是另一个数的几分之几。这类问题特点是已知两个数量,比较它们之间的倍数关系,解这类应用题用除法。基本的数量关系是:比较量÷标准量=分率。(1)求一个数是另一个数的几分之几:比较量÷标准量=分率(几分之几)。(2)求一个数比另一个数多几分之几:相差量÷标准量=分率(多几分之几)。(3)求一个数比另一个数少几分之几:相差量÷标准量
6、=分率(少几分之几)。3、已知一个数的几分之几是多少,求这个数。这类问题特点是已知一个数的几分之几是多少的数量,求单位“1”的量,解这类应用题用除法。基本的数量关系是:分率对应的比较量÷分率=标准量。(1)已知一个数的几分之几是多少,求这个数:是多少(分率对应的比较量)÷(分率)=标准量。(2)已知一个数比另一个数多几分之几多多少,求这个数:多多少(分率对应的比较量)÷(分率)=标准量。(3)已知一个数比另一个数多几分之几是多少,求这个数:是多少(分率对应的比较量)÷(1+)(分率)=标准量。(4)已知一个数比另一个数少几分之几少多少,求这个数
7、:少多少(分率对应的比较量)÷(分率)=标准量。(5)已知一个数比另一个数少几分之几是多少,求这个数:是多少(分率对应的比较量)÷(1–)(分率)=标准量。(三)分数应用题的基本训练1、正确审题能力训练正确审题是正确解题的前提。这里所说的审题能力,首先是根据题中的分率句,能准确分清比较量和标准量(看分率是谁的几分之几,谁就是标准量),且判断标准量已知(用乘法)或未知(用除法),为确定解题方法奠定基础;其次会把“比”字句转化成“是”字句;第三是能将省略式的分率句换说成比较详细的句子的能力。2、画线段图的训练线段图有直观、形象等特点。按题中的数量比
8、例,恰当选用实线或虚线把已知条件和问题表示出来,数形结合,有利于确定解题思路。3、量、率对应关系训练量、率对应关系的训练是解较复杂分数应用题的重要环节
此文档下载收益归作者所有