高中数学参数方程大题(带答案解析)

高中数学参数方程大题(带答案解析)

ID:20986838

大小:427.50 KB

页数:13页

时间:2018-10-18

高中数学参数方程大题(带答案解析)_第1页
高中数学参数方程大题(带答案解析)_第2页
高中数学参数方程大题(带答案解析)_第3页
高中数学参数方程大题(带答案解析)_第4页
高中数学参数方程大题(带答案解析)_第5页
资源描述:

《高中数学参数方程大题(带答案解析)》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、word资料下载可编辑参数方程极坐标系解答题1.已知曲线C:+=1,直线l:(t为参数)(Ⅰ)写出曲线C的参数方程,直线l的普通方程.(Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求

2、PA

3、的最大值与最小值.考点:参数方程化成普通方程;直线与圆锥曲线的关系.菁优网版权所有专题:坐标系和参数方程.分析:(Ⅰ)联想三角函数的平方关系可取x=2cosθ、y=3sinθ得曲线C的参数方程,直接消掉参数t得直线l的普通方程;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).由点到直线的距

4、离公式得到P到直线l的距离,除以sin30°进一步得到

5、PA

6、,化积后由三角函数的范围求得

7、PA

8、的最大值与最小值.解答:解:(Ⅰ)对于曲线C:+=1,可令x=2cosθ、y=3sinθ,故曲线C的参数方程为,(θ为参数).对于直线l:,由①得:t=x﹣2,代入②并整理得:2x+y﹣6=0;(Ⅱ)设曲线C上任意一点P(2cosθ,3sinθ).P到直线l的距离为.则,其中α为锐角.当sin(θ+α)=﹣1时,

9、PA

10、取得最大值,最大值为.当sin(θ+α)=1时,

11、PA

12、取得最小值,最小值为.点评:

13、本题考查普通方程与参数方程的互化,训练了点到直线的距离公式,体现了数学转化思想方法,是中档题. 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为:,曲线C的参数方程为:(α为参数).(I)写出直线l的直角坐标方程;(Ⅱ)求曲线C上的点到直线l的距离的最大值.考点:参数方程化成普通方程.菁优网版权所有专题:坐标系和参数方程.分析:(1)首先,将直线的极坐标方程中消去参数,化为直角坐标方程即可;(2)首先,化简曲线C的参数方程,然后,根据直线与圆的位置关系进行转化

14、求解.专业技术资料word资料下载可编辑解答:解:(1)∵直线l的极坐标方程为:,∴ρ(sinθ﹣cosθ)=,∴,∴x﹣y+1=0.(2)根据曲线C的参数方程为:(α为参数).得(x﹣2)2+y2=4,它表示一个以(2,0)为圆心,以2为半径的圆,圆心到直线的距离为:d=,∴曲线C上的点到直线l的距离的最大值=.点评:本题重点考查了直线的极坐标方程、曲线的参数方程、及其之间的互化等知识,属于中档题. 3.已知曲线C1:(t为参数),C2:(θ为参数).(1)化C1,C2的方程为普通方程,并说明它们

15、分别表示什么曲线;(2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值.考点:圆的参数方程;点到直线的距离公式;直线的参数方程.菁优网版权所有专题:计算题;压轴题;转化思想.分析:(1)分别消去两曲线参数方程中的参数得到两曲线的普通方程,即可得到曲线C1表示一个圆;曲线C2表示一个椭圆;(2)把t的值代入曲线C1的参数方程得点P的坐标,然后把直线的参数方程化为普通方程,根据曲线C2的参数方程设出Q的坐标,利用中点坐标公式表示出M的坐标,利用点到直线

16、的距离公式表示出M到已知直线的距离,利用两角差的正弦函数公式化简后,利用正弦函数的值域即可得到距离的最小值.解答:解:(1)把曲线C1:(t为参数)化为普通方程得:(x+4)2+(y﹣3)2=1,所以此曲线表示的曲线为圆心(﹣4,3),半径1的圆;把C2:(θ为参数)化为普通方程得:+=1,所以此曲线方程表述的曲线为中心是坐标原点,焦点在x轴上,长半轴为8,短半轴为3的椭圆;(2)把t=代入到曲线C1的参数方程得:P(﹣4,4),专业技术资料word资料下载可编辑把直线C3:(t为参数)化为普通方程

17、得:x﹣2y﹣7=0,设Q的坐标为Q(8cosθ,3sinθ),故M(﹣2+4cosθ,2+sinθ)所以M到直线的距离d==,(其中sinα=,cosα=)从而当cosθ=,sinθ=﹣时,d取得最小值.点评:此题考查学生理解并运用直线和圆的参数方程解决数学问题,灵活运用点到直线的距离公式及中点坐标公式化简求值,是一道综合题. 4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C上不同于A,B

18、的任意一点.(Ⅰ)求圆心的极坐标;(Ⅱ)求△PAB面积的最大值.考点:参数方程化成普通方程;简单曲线的极坐标方程.菁优网版权所有专题:坐标系和参数方程.分析:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入即可得出.(II)把直线的参数方程化为普通方程,利用点到直线的距离公式可得圆心到直线的距离d,再利用弦长公式可得

19、AB

20、=2,利用三角形的面积计算公式即可得出.解答:解:(Ⅰ)由圆C的极坐标方程为,化为ρ2=,把代入可得:圆C的普通方程为x2+y2﹣2x+2y=0,即

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。