资源描述:
《初中数学函数知识点归纳1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数知识点总结(掌握函数的定义、性质和图像)平面直角坐标系1、定义:平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系2、各个象限内点的特征:第一象限:(+,+)点P(x,y),则x>0,y>0;第二象限:(-,+)点P(x,y),则x<0,y>0;第三象限:(-,-)点P(x,y),则x<0,y<0;第四象限:(+,-)点P(x,y),则x>0,y<0;3、坐标轴上点的坐标特征:x轴上的点,纵坐标为零;y轴上的点,横坐标为零;原点的坐标为(0,0)。两坐标轴的点不属于任何象限。4、点的对称特征:已知点P(m,n),关于x轴的对称点坐标是(m,-n),横
2、坐标相同,纵坐标反号关于y轴的对称点坐标是(-m,n)纵坐标相同,横坐标反号关于原点的对称点坐标是(-m,-n)横,纵坐标都反号5、平行于坐标轴的直线上的点的坐标特征:平行于x轴的直线上的任意两点:纵坐标相等;平行于y轴的直线上的任意两点:横坐标相等。6、各象限角平分线上的点的坐标特征:第一、三象限角平分线上的点横、纵坐标相等。第二、四象限角平分线上的点横、纵坐标互为相反数。7、点P(x,y)的几何意义:点P(x,y)到x轴的距离为
3、y
4、,点P(x,y)到y轴的距离为
5、x
6、。12点P(x,y)到坐标原点的距离为8、两点之间的距离:X轴上两点为A、B
7、AB
8、Y轴上两点为C、D
9、
10、CD
11、已知A、BAB
12、=9、中点坐标公式:已知A、BM为AB的中点,则:M=(,)10、点的平移特征:在平面直角坐标系中,将点(x,y)向右平移a个单位长度,可以得到对应点(x-a,y);将点(x,y)向左平移a个单位长度,可以得到对应点(x+a,y);将点(x,y)向上平移b个单位长度,可以得到对应点(x,y+b);将点(x,y)向下平移b个单位长度,可以得到对应点(x,y-b)。注意:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上点的坐标的加减变化,我们也可以看出对这个图形进行了怎样的平移。函数的基本知识:基本概念1、变量:在一个变化过程中
13、可以取不同数值的量。常量:在一个变化过程中只能取同一数值的量。2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。*判断A是否为B的函数,只要看B取值确定的时候,A是否有唯一确定的值与之对应3、定义域和值域:定义域:一般的,一个函数的自变量允许取值的范围,叫做这个函数的定义域。值域:一般的,一个函数的因变量所得的值的范围,叫做这个函数的值域。4、确定函数定义域的方法:12(1)关系式为整式时,函数定义域为全体实数;(2)关系式含有分式时,分式的分母不等于零;(
14、3)关系式含有二次根式时,被开放方数大于等于零;(4)关系式中含有指数为零的式子时,底数不等于零;(5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。5、函数的图像一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.6、函数解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做解析式。7:增减性(单调性):增减性又叫单调性,分两种情况:单调增、单调减单调增:y随x的增大而增大单调减:y随x的增大而减小口诀:“同增异减”,注意:单调性只适用于单调区间,即有一个X只有唯一确定的y与之对应
15、时。8、描点法画函数图形的一般步骤第一步:列表(表中给出一些自变量的值及其对应的函数值);第二步:描点(在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点);第三步:连线(按照横坐标由小到大的顺序把所描出的各点用平滑曲线连接起来)。9、函数的表示方法列表法:一目了然,使用起来方便,但列出的对应值是有限的,不易看出自变量与函数之间的对应规律。解析式法:简单明了,能够准确地反映整个变化过程中自变量与函数之间的相依关系,但有些实际问题中的函数关系,不能用解析式表示。图象法:形象直观,但只能近似地表达两个变量之间的函数关系。一次函数图象和性质12【知
16、识梳理】一、一次函数的基础知识1、定义:一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数当b=0时,y=kx+b即y=kx,称为正比倒函数,所以说正比例函数是一种特殊的一次函数.一次函数的一般形式:y=kx+b(k≠0)说明:①k不为零②x指数为1③b取任意实数2、解析式:y=kx+b(k、b是常数,k0)3、图像:一次函数y=kx+b的图象是经过(0,b)和(-,0)两点的一条直线,我们称它为直线y=kx+b,4、增减性(单调性):k>0,y随x的增大而增大(单调增);k<0,