最全的递推数列求通项公式方法

最全的递推数列求通项公式方法

ID:20955729

大小:1.61 MB

页数:24页

时间:2018-10-18

最全的递推数列求通项公式方法_第1页
最全的递推数列求通项公式方法_第2页
最全的递推数列求通项公式方法_第3页
最全的递推数列求通项公式方法_第4页
最全的递推数列求通项公式方法_第5页
资源描述:

《最全的递推数列求通项公式方法》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、WORD文档下载可编辑高考递推数列题型分类归纳解析各种数列问题在很多情形下,就是对数列通项公式的求解。特别是在一些综合性比较强的数列问题中,数列通项公式的求解问题往往是解决数列难题的瓶颈。本文总结出几种求解数列通项公式的方法,希望能对大家有帮助。类型1解法:把原递推公式转化为,利用累加法(逐差相加法)求解。例:已知数列满足,,求。解:由条件知:分别令,代入上式得个等式累加之,即所以,变式:(2004,全国I,个理22.本小题满分14分)已知数列,且a2k=a2k-1+(-1)k,a2k+1=a2k+3k,其中k=1,2,3,…….(I)求a3,a5;(II)求{an}的通项公式

2、.解:,,即,…………将以上k个式子相加,得将代入,得专业技术资料分享WORD文档下载可编辑,。经检验也适合,类型2解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。例:已知数列满足,,求。解:由条件知,分别令,代入上式得个等式累乘之,即又,例:已知,,求。解:。变式:(2004,全国I,理15.)已知数列{an},满足a1=1,(n≥2),则{an}的通项解:由已知,得,用此式减去已知式,得当时,,即,又,,将以上n个式子相乘,得专业技术资料分享WORD文档下载可编辑类型3(其中p,q均为常数,)。解法(待定系数法):把原递推公式转化为:,其中,再利用换元法转化为等比数

3、列求解。例:已知数列中,,,求.解:设递推公式可以转化为即.故递推公式为,令,则,且.所以是以为首项,2为公比的等比数列,则,所以.变式:(2006,重庆,文,14)在数列中,若,则该数列的通项_______________(key:)变式:(2006.福建.理22.本小题满分14分)已知数列满足(I)求数列的通项公式;(II)若数列{bn}滿足证明:数列{bn}是等差数列;(Ⅲ)证明:(I)解:是以为首项,2为公比的等比数列即 (II)证法一:专业技术资料分享WORD文档下载可编辑             ①      ②②-①,得即 ③-④,得 即 是等差数列证法二:同证法

4、一,得 令得设下面用数学归纳法证明 (1)当时,等式成立(2)假设当时,那么这就是说,当时,等式也成立根据(1)和(2),可知对任何都成立是等差数列(III)证明:专业技术资料分享WORD文档下载可编辑变式:递推式:。解法:只需构造数列,消去带来的差异.类型4(其中p,q均为常数,)。(或,其中p,q,r均为常数)。解法:一般地,要先在原递推公式两边同除以,得:引入辅助数列(其中),得:再待定系数法解决。例:已知数列中,,,求。解:在两边乘以得:令,则,解之得:所以变式:(2006,全国I,理22,本小题满分12分)设数列的前项的和,(Ⅰ)求首项与通项;(Ⅱ)设,,证明:解:(

5、I)当时,;当时,,即,利用(其中p,q均为常数,)。专业技术资料分享WORD文档下载可编辑(或,其中p,q,r均为常数)的方法,解之得:(Ⅱ)将代入①得Sn=×(4n-2n)-×2n+1+=×(2n+1-1)(2n+1-2)=×(2n+1-1)(2n-1)Tn==×=×(-)所以,=-)=×(-)<类型5递推公式为(其中p,q均为常数)。解法一(待定系数法):先把原递推公式转化为其中s,t满足解法二(特征根法):对于由递推公式,给出的数列,方程,叫做数列的特征方程。若是特征方程的两个根,当时,数列的通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组);当时,数列的

6、通项为,其中A,B由决定(即把和,代入,得到关于A、B的方程组)。解法一(待定系数——迭加法):数列:,,求数列的通项公式。由,得,且。则数列是以为首项,为公比的等比数列,于是专业技术资料分享WORD文档下载可编辑。把代入,得,,,。把以上各式相加,得。。解法二(特征根法):数列:,的特征方程是:。,。又由,于是故例:已知数列中,,,,求。解:由可转化为即或专业技术资料分享WORD文档下载可编辑这里不妨选用(当然也可选用,大家可以试一试),则是以首项为,公比为的等比数列,所以,应用类型1的方法,分别令,代入上式得个等式累加之,即又,所以。变式:(2006,福建,文,22,本小题

7、满分14分)已知数列满足(I)证明:数列是等比数列;(II)求数列的通项公式;(III)若数列满足证明是等差数列(I)证明:是以为首项,2为公比的等比数列(II)解:由(I)得  (III)证明:        ①专业技术资料分享WORD文档下载可编辑  ②②-①,得即     ③     ④④-③,得即是等差数列类型6递推公式为与的关系式。(或)解法:这种类型一般利用与消去或与消去进行求解。例:已知数列前n项和.(1)求与的关系;(2)求通项公式.解:(1)由得:于是所以.(2)应用类型4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。