全等三角形知识点总结复习2

全等三角形知识点总结复习2

ID:20889822

大小:111.36 KB

页数:6页

时间:2018-10-17

全等三角形知识点总结复习2_第1页
全等三角形知识点总结复习2_第2页
全等三角形知识点总结复习2_第3页
全等三角形知识点总结复习2_第4页
全等三角形知识点总结复习2_第5页
资源描述:

《全等三角形知识点总结复习2》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、全等三角形1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形.⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.理解:①全等三角形形状与大小完全相等,与位置无关;②一个三角形经过平移、翻折、旋转可以得到它的全等形;③三角形全等不因位置发生变化而改变。.2.基本性质:理解:①长边对长边,短边对短边;最大角对最大角,最小角对最小角;②对应角的对边为对应边,对应边对的角为对应角。(3)全等三角形的周长相等、面积相等。(4)全等三角形的对应边上的对应中线、角平分线、高线分别相等。3.全等三角形的判定定理:⑴边边边():三边对应相等的两个三角形全等.⑵边角边():两边和它们的夹

2、角对应相等的两个三角形全等.⑶角边角():两角和它们的夹边对应相等的两个三角形全等.⑷角角边():两角和其中一个角的对边对应相等的两个三角形全等.⑸斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.4.证明两个三角形全等的基本思路:5.角平分线:6⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等.⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.(4)三角形的三条角平分线交于三角形内部一点,并且这点到三边的距离相等6.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边

3、角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程.7.学习全等三角形应注意以下几个问题:(1)要正确区分“对应边”与“对边”,“对应角”与“对角”的不同含义;(2)表示两个三角形全等时,表示对应顶点的字母要写在对应的位置上;(3)“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;6通关精选1.如图,△ABC≌△EFD,且AB=EF,EC=4,CD=3,则AC=()A.3B.4C.7D.8,第1题图)       2.如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠

4、AOB等于()A.120°B.125°C.130°D.135° ,第2题图)3.如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是()A.AB=EDB.AC=EFC.AC∥EFD.BF=DC,第3题图)  4.如图,在△ABC中,∠B=42°,AD⊥BC于点D,点E是BD上一点,EF⊥AB于点F,若ED=EF,则∠AEC的度数为()A.60°B.62°C.64°D.66°,第4题图)5.如图,AD是△ABC的中线,E,F分别是AD和AD延长线上的点,6且DE=DF,连接BF,CE.下列说法:

5、①CE=BF;②△ABD和△ACD面积相等;③BF∥CE;④△BDF≌△CDE.其中正确的有()A.4个B.3个C.2个D.1个,第5题图)        常考例题精选1.(2015·绥化中考)如图,A,B,C三点在同一条直线上,∠A=∠C=90°,AB=CD,请添加一个适当的条件    ,使得△EAB≌△BCD.2.(2015·临沂中考)在Rt△ABC中,∠ACB=90°,BC=2cm,CD⊥AB,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5cm,则AE=    cm.3.(2015·武汉中考)如图,点E,F在BC上,BE=CF,AB=D

6、C,∠B=∠C.求证:∠A=∠D.64.(2015·昆明中考)已知:如图,AD,BC相交于点O,OA=OD,AB∥CD.求证:AB=CD.5.(2015·大理中考)如图,点B在AE上,点D在AC上,AB=AD,请你添加一个适当的条件,使△ABC≌△ADE(只能添加一个).(1)你添加的条件是       .(2)添加条件后,请说明△ABC≌△ADE的理由.6.(2015·河源中考)如图,已知AB=CD,∠B=∠C,AC和BD相交于点O,E是AD的中点,连接OE.(1)求证:△AOB≌△DOC.(2)求∠AEO的度数.7.如图,在△ABC中,∠C=90°,AD平分∠CAB,DE⊥

7、AB于点E,点F在AC上,BE=FC,求证:BD=DF.68.如图,在△ABE和△ACF中,∠E=∠F=90°,∠B=∠C,BE=CF.求证:(1)∠1=∠2;(2)CM=BN.9.如图,在△ABC中,∠B=∠C,AB=10cm,BC=8cm,D为AB的中点,点P在线段上以3cm/s的速度由点B向点C运动,同时,点Q在线段CA上以相同速度由点C向点A运动,一个点到达终点后另一个点也停止运动.当△BPD与△CQP全等时,求点P运动的时间.6

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。