第二章 回顾与思考教学设计

第二章 回顾与思考教学设计

ID:20862973

大小:80.00 KB

页数:8页

时间:2018-10-17

第二章 回顾与思考教学设计_第1页
第二章 回顾与思考教学设计_第2页
第二章 回顾与思考教学设计_第3页
第二章 回顾与思考教学设计_第4页
第二章 回顾与思考教学设计_第5页
资源描述:

《第二章 回顾与思考教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第二章一元二次方程回顾与思考一、学生知识状况分析学生的知识技能基础:学生在七年级和八年级已经学习了一元一次方程、二元一次方程以及一次函数的相关知识及应用,在本章中,又学习了一元二次方程的相关解法,初步体会了一元二次方程在解决实际问题中的具体应用,具备了利用数学知识解决实际问题的能力;学生活动经验基础:在相关知识的学习过程中,学生已经经历了由具体问题抽象出数学模型的过程,初步积累了一定的数学建模方法;同时在以往的数学学习中学生已经经历了很多合作学习的机会,具有一定的合作学习经验,具备了一定的合作与交流的能力.二、教学任务分析本节课是一元二次方程的复习课,对于本章的基础知识,学生已大致

2、掌握.本节课以梳理、巩固基础知识为起点,重点解决在学生中存在的易错点与混淆点;实际应用是方程建模思想的具体体现,学生往往感到有一定的难度,本节课以此为重点,从简单的实际问题入手,逐步加深对建模思想的理解.为此,设置本节课的教学目标如下:1、知识与技能:①经历由具体问题抽象出一元二次方程的过程,进一步体会方程是刻画现实世界中数量关系的一个有效数学模型;②能够利用一元二次方程解决有关实际问题,帮助学生认识到运用方程解决实际问题的关键是确定题目中蕴含的等量关系;并且能根据具体问题的实际意义检验结果的合理性,进一步培养学生分析问题、解决问题的意识和能力;③了解一元二次方程及其相关概念,会用

3、配方法、公式法、因式分解法解简单的一元二次方程,并在解一元二次方程的过程中体会转化等数学思想;2、过程与方法:①通过让学生经历将多种实际问题抽象成数学问题的过程,进一步体会8方程是刻画现实世界中数量关系的一个有效数学模型;②通过小组合作学习,经历一题多解等过程,发展学生多角度思考问题的方法.情感与态度:①通过对方程的认识、一题多解的思维展示,发展学生勇于展示自己的品质;②在解决富有挑战性的问题的过程中,培养学生敢于直面困难、勇于挑战的良好品质,鼓励学生大胆尝试,体会成功的喜悦,激发学生学习数学的兴趣.三、教学过程分析本节课设计了六个教学环节:第一环节:课前准备---构建知识结构;第

4、二环节:基础知识重现;第三环节:情境中合作学习;第四环节:巩固提高;第五环节:课堂小结;第六环节:布置作业.第一环节:课前准备----构建知识结构活动内容:在授完本章新课知识后,让学生重新回顾本章内容,整理出本章的知识结构网络,理清各板块内容间的联系.此活动内容在上课前一天布置,让每一位学生都提前做好准备.上课时,选取有代表性的知识结构网络进行全班展示,其他同学对照自己的总结查缺补漏.同时,教师展示一下本章的框架,指出本节课的重点是:利用一元二次方程解决实际问题.活动目的:学生在整理本章知识结构的同时,可以回顾本章的重点内容,细细体会解一元二次方程的“转化”思想,找寻利用方程解决实

5、际问题的关键.活动的实际效果:基于对学生两年来的不间断训练,绝大分学生可以对本章的主要内容以及注意点详细地总结出来,只是呈现形式略微不同.但也有少数同学只是泛泛地停留在书本上的定义、黑体字上,对于更深入的内容总结不到位,这部分同学在教学中往往也是需要特别关注的同学,需要我们教师从各方面来激发他们对数学学习的兴趣.附部分学生的作业:学生A的本章知识结构㈠问题情景----—元二次方程1、定义:只含有一个未知数x的整式方程,并且都可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程.⑴直接开平方法⑵配方法⑶公式法ax2+bx+c=0(a≠0,b2-4

6、ac≥0)的解为:⑷因式分解法2、解法:3、应用:其关键是能根据题意找出等量关系.8㈡本章的重点:一元二次方程的解法和应用.㈢本章的难点:应用一元二次方程解决实际问题的方法.学生B的本章知识结构:本章的知识体系包括三大部分:(一)一元二次方程的定义:只含有一个未知数x的整式方程,并且都可以化成ax2+bx+c=0(a,b,c为常数,a≠0)的形式,这样的方程叫做一元二次方程.在这里应注意的问题是:⑴只含有一个未知数;⑵未知数的最高指数必须是2;(3)二次项系数不为0)(二)一元二次方程的解法:一元二次方程的常用解法有:⑴直接开平方法;⑵配方法;⑶公式法;⑷因式分解法.(注意:在运用

7、配方法解一元二次方程时,一般先将二次项系数化为1;在运用公式法解一元二次方程时,必须先将方程化为ax2+bx+c=0(a≠0)的形式,同时判断b2-4ac是否≥0,如果b2-4ac≥0,才可用公式求解),并由此推导出如何判断一元二次方程的根的情况的方法。(三)一元二次方程的应用:花边、道路宽度(P42引例);梯子滑动(P43引例);养鸡场问题(P562);古算题(P651);简单动点问题(P662);利润问题(P66例2)(其关键是能找出题目中的等量关系,列出方程)本

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。