初中教学数列斐波那契

初中教学数列斐波那契

ID:20752068

大小:240.50 KB

页数:13页

时间:2018-10-15

初中教学数列斐波那契_第1页
初中教学数列斐波那契_第2页
初中教学数列斐波那契_第3页
初中教学数列斐波那契_第4页
初中教学数列斐波那契_第5页
资源描述:

《初中教学数列斐波那契》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、《斐波那契数列》主题探究教学设计方案一、概述本主题为人教课标必修5第二章——《数列》中关于有阅读与思考的内容.本主题是在已有数列基本知识的基础上,探索斐波那契数列的发展历史、实际生活中的斐波那契数列,以及斐波那契数列的一些特性.斐波那契数列与实际生活联系比较紧密,有着广泛的应用,而且本身也有许多特殊的性质.使学生体会数学的科学价值、应用价值,领会数学的美学价值,从而提高自身的文化素质和创新意识.二、教学目标分析1.进一步巩固数列的相关知识,加深对数列的认识,能在具体问题情境中,发现数列的关系,并能用有关

2、知识解决相应的问题.2.初步了解数学科学与人类社会发展之间的相互作用,体会数学的科学价值、应用价值,开拓视野,激发学习数学的兴趣,提高自身的文化素养和创新意识.三、学习者特征分析学生已经掌握数列、等差、等比数列的知识,能在具体的情境问题中,发现数列中特殊的关系:等差或等比关系,能用相关知识解决相应的问题.部分学生有一定的自主学习能力、协作学习能力.但应用意识不强,创新能力不强,因此需要一定的指导.学生具有一定的计算机运用能力,能够通过网络搜索相关资源,能借助计算机解决相应的问题.四、教学策略选择与设计主

3、要采用网络探究,小组协作的方式,在复习数列相关知识,然后逐步探究斐波那契数列的历史、应用、特征,教师做好指导、协调工作,对于学生探究结论给予相应评价.五、教学资源与工具设计1.人教A版普通高中课程标准实验教科书必修5;2.网络课件;131.斐波那契数列计算器;2.网络型多媒体教室.六、教学过程本主题共需1个课时.具体安排如下:(一)问题引入由学生计算,教师给予相应的指导.如果一对兔子每月能生1对小兔子(一雄一雌),而每1对小兔子在它出生后的第三个月里,又能生1对小兔子.假定在不发生死亡的情况下,由1对出

4、生的小兔子开始,50个月后会有多少对兔子?提示:每月底兔子对数是:1,1,2,3,5,8,13,21,34,55,89,144,233,……,50个月后是12586269025对.这就是著名的斐波那契数列.或许大自然懂得数学,树木的分杈、花瓣的数量、种子的排列、鹦鹉螺的螺旋线……都遵循这个数列.你能写出以后的项吗?设计意图:通过斐波那契的兔子问题引入,让学生通过计算、思考,对斐波那契数列有感性认识.(二)数列知识1.数列的起源人们对数列的研究主要源于生产、生活的需要,以及出于对自然数的喜爱.数是刻画静态

5、物体下的量,一系列的数刻画物体的变化情况,这些按一定顺序排列着的一列数称为数列(sequenceofnumber).数列是刻画离散过程的重要数学模型,在生活中经常遇到的存款利息、细胞分裂等问题都与数列有关.在古希腊,对毕氏学派而言,万物都是数.他们将数用小石子排列成各种形状,可以排成三角形的小石子数称为三角形数,可以排成正方形的小石子数称为正方形数.三角形数:正方形数:五边形数:13每种多边形数均是一个数列.设计意图:让学生对于数列的起源有所了解,便于理解研究数列的意义.2.数列的相关知识让学生快速梳理

6、数列的基本知识:(1)数列的一般形式:,简记为.(2)数列的表示方法:(1)列表法;(2)图象法;(3)通项公式法.(3)数列的分类:项数有限无限:项数的随序号的变化情况:(4)数列通项公式:;主要方法:①观察数列的特点,寻找项数与对应序号的关系.②化归法(将数列变形,使原数列的倒数或与某同一常数的和成等差或等比数列).③逐差全加(对于后一项与前一项差中含有未知数的数列).例如:数列中,,求.④逐商全乘法(对于后一项与前一项商中含有未知数的数列).例如:数列,,求.⑤正负相间:利用或.⑥(隔项有零:利用

7、或.(5)数列求和的主要方法①利用等差或等比的求和公式.13②利用通项列项求和.③错项相减法:适用于通项为等比和等差通项之积形式的数列求和.④倒序相加法:例如等差数列求和公式的推导.⑤配对法:适合某些正负相间型的数列.学生思考:若我们分别以来代表下图的正方形数、三角形数及五边形数,你能发现求出通项公式吗?三者的关系呢?(可以借助图形特点)n个n个  n个     n个教师给予适当的指导.提示:由上图我们不难看出:.而.每个正方形数都可以看成两个三角形数的和.n个 13        观察五角形数可以知道

8、即设计意图:让学生回顾数列的基本知识,便于将知识系统化,能更好的从整体上把握,灵活应用数列解决相应问题.3.数列与函数的关系让学生回顾.数列可以看成是定义域为正整数集(或它的有限子集)的函数.当自变量顺次从小到大依次取值时对应的一列函数值,而数列的通项公式则是相应的函数解析式.由于数列的项是函数值,序号是自变量,所以以序号为横坐标,相应的项为纵坐标画出的图像是一些孤立的点,所以说数列是一类特殊的函数.数列具有函数的一般性质,可以借助数形结合

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。