automatic face recognition system by combining four individual algorithms

automatic face recognition system by combining four individual algorithms

ID:20724289

大小:593.27 KB

页数:15页

时间:2018-10-15

automatic face recognition system by combining four individual algorithms_第1页
automatic face recognition system by combining four individual algorithms_第2页
automatic face recognition system by combining four individual algorithms_第3页
automatic face recognition system by combining four individual algorithms_第4页
automatic face recognition system by combining four individual algorithms_第5页
资源描述:

《automatic face recognition system by combining four individual algorithms》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、AutomaticFaceRecognitionSystembyCombiningFourIndividualAlgorithmsSection1:INTRODUCTIONUniquefacialcharacteristicsofhumanbeingsoftenrecognizeoneanother.Inthefacerecognitionapproach,agivenfaceiscomparedwiththefacesstoredinafacedatabaseinordertoidentifytheperson.Thepurposeistofindaf

2、aceinthedatabase,whichhasthehighestsimilaritywiththegivenface.Amongthemethodswehaveachieved,theprojectingapproachesarethosebasedonPrincipalComponentAnalysis(PCA),TemplateMatchingusingCorrelation,NeuralNetwork,ModelMatching,PartitionedIteratedFunctionSystem(PIFS),WaveletandDiscret

3、eCosineTransform(DCT).Forenhancingtheaccuracyandtoincreasetheperformanceofthefacerecognitionsystemacombinationofthesealgorithmsinagroupoftwoorthreeindividualtechniquescanbeused.here,wediscussthefourdifferentindividualfacerecognitiontechniquesbasedonPCA,DCT,TemplateMatchingusingCo

4、rrelation,PIFSandalsodiscussrecentlydevelopeddifferentmulti-algorithmicapproachesforthefacerecognitionsystemsbasedonthedifferentcombinations(ingroupoftwoorthree)oftheseindividualtechniques,andweusethesamemulti-algorithmicapproachforthefacerecognitionsystemsbasedonthedifferentcomb

5、inationsbutingroupoffouroftheseindividualtechniques.Thegoalistofindwhichcombinationofthesetechniquesperformsbetterintermsoffacerecognitionrate.Section2:RELATEDWORKS1.PCA(principlecomponentsanalysis,PCA)PCAalsoknownasEigenfacemethod,InPCAmethodtheimagesareprojectedontothefacialval

6、uesocalledeigenspace.PCAapproachreducesthedimensionofthedatabymeansofbasicdatacompressionmethodandrevealsthemosteffectivelowdimensionalstructureoffacialpatterns.2.LFA(localfeatureanalysis,LFA)LFAmethodofrecognitionisbasedontheanalysisthefaceintermsoflocalfeaturese.g.eye,noseetc.b

7、ywhatisreferredLFAkernels.3.NeuralNetworkRecognitionbyNeuralNetworkandarebasedonlearningofthefacesinan‘ExampleSet’bythemachineinthe‘TrainingPhase’andcarryingoutrecognitioninthe‘GeneralizationPhase’.4.SVM(SupportVectorMachines,SVM)SupportVectorMachines(SVM)techniqueisinfactoneofth

8、ebinaryclassificationmethods.Thesupportv

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。