人脸识别设计报告

人脸识别设计报告

ID:20549365

大小:113.36 KB

页数:8页

时间:2018-10-13

人脸识别设计报告_第1页
人脸识别设计报告_第2页
人脸识别设计报告_第3页
人脸识别设计报告_第4页
人脸识别设计报告_第5页
资源描述:

《人脸识别设计报告》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、数字信号处理设计报告设计题目:人脸检测学院、系:信工学院电信系年级、班:11级电信2班设计单位(组):第四组2014.5.78摘要人脸识别是当前模式识别领域的一个前沿课题,人脸识别技术就是利用计算机技术,根据数据库的人脸图像,分析提取出有效的识别信息,用来“辨认”身份的技术。本文介绍了多种人脸识别方法,基于对人脸识别方法优缺点的分析比较,提出了一种基于主元分析(PCA)的人脸识别方法。通过PCA算法对人脸图像进行特征提取,再利用最邻近距离分类法对特征向量进行分类识别。利用剑桥ORL的人脸数据库的数据进行实验仿真,仿真结果验证了本算法是有效的。关键词:人脸识别,主

2、元分析,最近邻距离分类法,人脸库绪论 人脸识别是模式识别研究的一个热点,它在身份鉴别、信用卡识别,护照的核对及监控系统等方面有着广泛的应用。人脸图像由于受光照、表情以及姿态等因素的影响,使得同一个人的脸像矩阵差异也比较大。因此,进行人脸识别时,所选取的特征必须对上述因素具备一定的稳定性和不变性.主元分析(PCA)方法是一种有效的特征提取方法,将人脸图像表示成一个列向量,经过PCA变换后,不仅可以有效地降低其维数,同时又能保留所需要的识别信息,这些信息对光照、表情以及姿态具有一定的不敏感性.在获得有效的特征向量后,关键问题是设计具有良好分类能力和鲁棒性的分类器.支

3、持向量机(SVM)模式识别方法,兼顾训练误差和泛化能力,在解决小样本、非线性及高维模式识别问题中表现出许多特有的优势。8一、人脸识别方法虽然人脸识别方法的分类标准可能有所不同,但是目前的研究主要有两个方向,一类是从人脸图像整体(HolisticApproaches)出发,基于图像的总体信息进行分类识别,他重点考虑了模式的整体属性,其中较为著名的方法有:人工神经网络的方法、统计模式的方法等。另一类是基于提取人脸图像的几何特征参数(Feature-BasedApproaches),例如眼、嘴和鼻子的特征,再按照某种距离准则进行分类识别。这种方法非常有效,因为人脸不是

4、刚体,有着复杂的表情,对其严格进行特征匹配会出现困难。而分别介绍一些常用的方法,前两种方法属于从图像的整体方面进行研究,后三种方法主要从提取图像的局部特征讲行研究。基于特征脸的方法特征脸方法(eigenface)是从主元分析方法PCACPrincipalComponentAnalysis导出的一种人脸分析识别方法,它根据一组人脸图像构造主元子空间,由于主元具有人脸的形状也称作特征脸。识别时将测试图像投影到主元子空间上得到了一组投影系数,然后和各个己知人的人脸图像进行比较识别,取得了很好的识别效果。在此基础上出现了很多特征脸的改进算法。特征脸方法原理简单、易于实现

5、,它把人脸作为一个整体来处理,大大降低了识别复杂度。但是特征脸方法忽视了人脸的个性差异,存在着一定的理论缺陷。研究表明:特征脸方法随光线角度及人脸尺寸的影响,识别率会有所下降。二、仿真实验训练样本测试模块分类结果测试样本PCA变换矩阵流程图8图1整体流程图先确定训练样本和测试样本,之后经过PCA变换矩阵达到降维的目的,投影到降维子空间中形成相应的坐标,最后用最邻近距离分类法进行识别。训练样本总体散度矩阵去均值奇异值分解PCA变换矩阵图2训练部分流程图确定训练样本,之后去均值,计算总体散度矩阵,利用奇异值分解后经过PCA变换矩阵达到降维的目的。8仿真结果图3人脸识

6、别仿真结果提取面部特征,将人脸图像看成高维向量,将其组成一个向量矩阵,对每一幅图像进行变换(即在特征空间中进行投影)计算其协方差矩阵,故经过PCA变换去除了数据间的相关性,减小了冗余。达到了降维的目的。选取大的特征值,即将特征值按从大到小排序,选取前k个特征值对应的特征向量,主成分矩阵为样本在该特征空间上的投影,从而计算出特征向量和特征值,对于要测试的人脸,将其在该子空间上投影,得到其坐标,和样本空间上各个人脸的坐标相比较,距离最近的即为该人脸的识别结果。8有图可知:上面四幅图为样本在降维子空间上的投影,下面四幅图为要检测的人脸在降维子空间上的投影,用最邻近距离

7、分类法,阴影部分距离最近的即为识别结果。三、MATLAB人脸识别系统人脸识别是图像识别的一个重要分支,其基本结构如图所示。为了保证人脸的位置一致性,在一定程度上克服了背景、头发等冗余信息的干扰,首先要对人脸库中的图像进行一些预处理操作。紧接着,进行特征抽取,将得到的人脸特征和训练样本进行对比,根据相似程序的高低决定最后的识别结果。(一)、人脸图像的预处理常应用于人脸图像的预处理方法有图像类型转换、滤波去噪、灰度变换、边缘检测及二值化、尺寸归一化、作为通用人脸图像预处理模块要能够充分适应不同人脸库中图像在人脸大小、光照强度、成像系统等方面的任意性和差异性不能单独采

8、用某种单一的滤波、灰度变

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。