欢迎来到天天文库
浏览记录
ID:20539726
大小:469.50 KB
页数:7页
时间:2018-10-13
《浅析svc与svg异同点》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、浅析SVC与SVG的异同点周文1,毛志芳2,毛志强3(1.河北省电力研究院,石家庄050021;2.石家庄供电公司,石家庄050051;3.行唐供电公司,石家庄050600)摘要:分别介绍了TCR、TSC和MCR3种类型的静止补偿器(SVC)与静止无功发生器(SVG)的工作特性与基本原理,重点针对SVC与SVG在响应时间、谐波特性等方面进行了分析比较。并得出了SVG是今后无功补偿与谐波抑制综合技术的发展方向,以及为电能质量领域研究的重点内容。关键词:静止补偿器,静止无功发生器,无功补偿,SVC,SVG1.引言现
2、代工业系统中,诸如交流电弧炉、电气化铁路、大型轧钢机等均属于动态变化的非线性负荷。这类负荷的特点是有功功率与无功功率随时间作快速变化,由于其非线性和不平衡的用电特性,使供电电网的电压波形发生畸变,引起电压的波动、闪变以及三相不平衡,甚至引起系统频率的波动,而且向系统注入大量的谐波,对电网的电能质量构成了严重的威胁。近年发展起来的静止型无功补偿装置(StaticVarCompensation,以下简称SVC)[1],是一种快速调节无功功率的装置,已成功地应用于冶金、采矿和电气化铁路等冲击性负荷的补偿上。这种装置在
3、调节快速性、功能多样性、工作可靠性以及投资和运行费用的经济性等方面都比同步调相机有明显的优点,取得了较好的技术经济效益,因而在国内外得到较快的发展与实际应用。基于在SVC技术研究的基础之上,随着GTO、IGCT、IGBT等大功率电力电子器件的发展和应用,静止无功发生器(StaticVarGeneration,简称SVG)成为最新一代动态无功补偿技术,具备响应速度快、吸收无功连续、产生的高次谐波量小、调节范围广、损耗与噪音小等突出优点,在电能质量与无功补偿研究的领域发挥越来越大的作用。下面对SVC与SVG两种典型
4、的特性做比较分析,以利于新技术的推广与应用。2.静止无功补偿装置(SVC)SVC目前广泛应用于输电系统和负载无功补偿,其典型代表是晶闸管控制电抗器+固定电容器(TCR+FC)、晶闸管投切电容器(TSC)、以及磁控电抗器+固定电容器(MCR+FC)等。2.1晶闸管控制电抗器TCR+FC7TCR通过调节晶闸管的触发角α,实现连续调节补偿装置的无功功率。利用TCR回路吸收的感性无功功率,可以对无功功率进行动态补偿,使得并联滤波器中多余的无功功率得到平衡,确保补偿点的电压接近维持不变。其基本组成如下图1所示。图1TCR
5、+FC基本组成2.2晶闸管投切电容器TSC一般情况下,按照一定的比例设计成多组支路的滤波器,在基波频率下成容性,分级改变补偿装置的无功出力,滤波支路在某次谐波下偏调谐,兼滤该次谐波。TSC只能分组投切,必须和TCR配合才能进行连续调节。TSC的基本电路有3种[2],如图2、图3和图4所示,图2为星形有中线连接,图3为三角形外部连接,简称角外接法,图4为三角形内部连接,简称角内接法。在这3种电路的基础上又衍生出很多其他的拓扑结构,比如将每相的一个晶闸管换成二极管,或者为了节约成本去掉某相的晶闸管开关。选用何种拓扑
6、结构应结合现场负荷实际情况及技术经济等因素综合考虑。图2星形有中线连接图3三角形外部连接图4三角形内部连接2.3磁控电抗器MCR+FC7MCR利用直流助磁原理,通过附加直流励磁磁化电抗器铁芯,通过调节磁控电抗器的饱和程度来改变铁芯的磁导率,实现电抗值的连续、快速调节。从而实现无功容量的连续可调。其基本组成如下图5所示。图5MCR+FC基本组成3.静止无功发生器(SVG)SVG不仅能动态补偿无功,也可动态补偿瞬时有功或者进行相间功率交换。国际上通常称为静止补偿器,即STATCOM是柔性交流输配电技术FACTS的重
7、要设备。SVG基本原理主要是将逆变器经过电抗器或者变压器或者直接并联在电网上,通过调节逆变器交流侧输出电压的幅值和相位,或者直接控制其交流侧电流的幅值和相位,迅速吸收或者发出所需要的无功功率,实现快速动态调节无功的目的。其基本电路有2种,如图6和图7所示,图6为电压源型逆变电路,图7为电流源型逆变电路。图6为电压源型逆变电路图7电流源型逆变电路4.SVC与SVG的比较7各种SVC的共同缺点是含有较多的无源器件,体积和占地面积都比较大;工作范围较窄,无功输出随着电压下降而下降更快,系统最需要无功时不能提供足够的无
8、功支持;本身对谐波没有抑制能力,例如TCR本身还会产生大量低次谐波,需要额外的滤波器。4.1响应时间一般而言,SVC的响应时间约20-40ms,而SVG的响应时间不大于5ms。对于闪变补偿而言,在无功容量足够的情况下,补偿装置输出无功的响应时间是闪变补偿效果的主要决定因素。图8所示为日本电热委员会实测的闪变补偿效果与补偿容量和响应时间的曲线。由图中可看出,在相同的补偿容量下,响应时间越
此文档下载收益归作者所有