动态规划之01背包与完全背包

动态规划之01背包与完全背包

ID:20441690

大小:30.00 KB

页数:3页

时间:2018-10-09

动态规划之01背包与完全背包_第1页
动态规划之01背包与完全背包_第2页
动态规划之01背包与完全背包_第3页
资源描述:

《动态规划之01背包与完全背包》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、0-1背包状态转移方程:       f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}     “将前i件物品放入容量为v的背包中”这个子问题,若只考虑第i件物品的策略(放或不放),那么就可以转化为一个只牵扯前i-1件物品的问题。如果不放第i件物品,那么问题就转化为“前i-1件物品放入容量为v的背包中”,价值为f[i-1][v];如果放第i件物品,那么问题就转化为“前i-1件物品放入剩下的容量为v-c[i]的背包中”,此时能获得的最大价值就是f[i-1][v-

2、c[i]]再加上通过放入第i件物品获得的价值w[i]。优化空间复杂度后得到:  fori=1..N       forv=V..0            f[v]=max{f[v],f[v-c[i]]+w[i]};    其中的f[v]=max{f[v],f[v-c[i]]}一句恰就相当于我们的转移方程f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]},因为现在的f[v-c[i]]就相当于原来的f[i-1][v-c[i]]。procedureZeroOnePack(cos

3、t,weight)      forv=V..cost            f[v]=max{f[v],f[v-cost]+weight}  注意这个过程里的处理与前面给出的伪代码有所不同。前面的示例程序写成v=V..0是为了在程序中体现每个状态都按照方程求解了,避免不必要的思维复杂度。而这里既然已经抽象成看作黑箱的过程了,就可以加入优化。费用为cost的物品不会影响状态f[0..cost-1],这是显然的。    有了这个过程以后,01背包问题的伪代码就可以这样写:fori=1..NZero

4、OnePack(c[i],w[i]);     如果是要求恰好装满背包,那么在初始化时除了f[0]为0其它f[1..V]均设为-∞,这样就可以保证最终得到的f[N]是一种恰好装满背包的最优解。如果并没有要求必须把背包装满,而是只希望价格尽量大,初始化时应该将f[0..V]全部设为0。     为什么呢?可以这样理解:初始化的f数组事实上就是在没有任何物品可以放入背包时的合法状态。如果要求背包恰好装满,那么此时只有容量为0的背包可能被价值为0的nothing“恰好装满”,其它容量的背包均没有合法的

5、解,属于未定义的状态,它们的值就都应该是-∞了。如果背包并非必须被装满,那么任何容量的背包都有一个合法解“什么都不装”,这个解的价值为0,所以初始时状态的值也就全部为0了。前面的伪代码中有forv=V..1,可以将这个循环的下限进行改进。由于只需要最后f[v]的值,倒推前一个物品,其实只要知道f[v-w[n]]即可。以此类推,对以第j个背包,其实只需要知道到f[v-sum{w[j..n]}]即可,即代码中的fori=1..N   forv=V..0可以改成fori=1..n   bound=ma

6、x{V-sum{w[i..n]},c[i]}   forv=V..bound这对于V比较大时是有用的。l    完全背包状态转移方程:f[i][v]=max{f[i-1][v-kc[i]]+kw[i]0<=kc[i]<=v}优化1:       若两件物品i、j满足c[i]<=c[j]且w[i]>=w[j],则将物品j去掉,不用考虑。这个优化的正确性显然:任何情况下都可将价值小费用高得j换成物美价廉的i,得到至少不会更差的方案。对于随机生成的数据,这个方法往往会大大减少物品的件数,从而加快速度。

7、然而这个并不能改善最坏情况的复杂度,因为有可能特别设计的数据可以一件物品也去不掉优化2:       首先将费用大于V的物品去掉,然后使用类似计数排序的做法,计算出费用相同的物品中价值最高的是哪个,可以O(V+N)地完成这个优化优化的算法:fori=1..N   forv=0..V        f[v]=max{f[v],f[v-cost]+weight}        你会发现,这个伪代码与P01的伪代码只有v的循环次序不同而已。为什么这样一改就可行呢?首先想想为什么P01中要按照v=V..

8、0的逆序来循环。这是因为要保证第i次循环中的状态f[i][v]是由状态f[i-1][v-c[i]]递推而来。换句话说,这正是为了保证每件物品只选一次,保证在考虑“选入第i件物品”这件策略时,依据的是一个绝无已经选入第i件物品的子结果f[i-1][v-c[i]]。而现在完全背包的特点恰是每种物品可选无限件,所以在考虑“加选一件第i种物品”这种策略时,却正需要一个可能已选入第i种物品的子结果f[i][v-c[i]],所以就可以并且必须采用v=0..V的顺序循环。这就是这个简单的程序为何成立的道理。 

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。