欢迎来到天天文库
浏览记录
ID:20428461
大小:30.00 KB
页数:10页
时间:2018-10-13
《教案精选:高二物理《单摆》教学设计》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、教案精选:高二物理《单摆》教学设计 教案精选:高二物理《单摆》教学设计 教案精选:高二物理《单摆》教学设计 教案精选:高二物理《单摆》教学设计 (www.02edu.com)小编精心搜集整理的,希望对您有所帮助! 【教学目标】 (一)知识与技能 1、知道什么是单摆,了解单摆的构成。 2、掌握单摆振动的特点,知道单摆回复力的成因,理解摆角很小时单摆的振动是简谐运动。 3、知道单摆的周期跟什么因素有关,了解单摆的周期公式,并能用来进行有关的计算。 4、知道用单摆可测定重力加速度。 (二)过程与方法
2、1、知道单摆是一种理想化的系统,学会用理想化的方法建立物理模型。 2、通过单摆做简谐运动条件的教学,体会用近似处理方法来解决物理问题。 3、通过研究单摆的周期,掌握用控制变量的方法来研究物理问题。 (三)情感、态度与价值观 1、单摆在小角度情况下做简谐运动,它既有简谐运动的共性,又有其特殊性,理解共性和个性的关系; 2、当单摆的摆角大小变化时,单摆的振动也将不同,理解量变和质变的变化规律。 3、培养抓住主要因素,忽略次要因素的辨证唯物主义思想。 【教学重点】 1、知道单摆回复力的来源及单摆满足简谐运动的条件
3、; 2、通过定性分析、实验、数据分析得出单摆周期公式。 【教学难点】 1、单摆振动回复力的分析; 2、与单摆振动周期有关的因素。 【教学方法】 分析推理与归纳总结、数学公式推导法、实验验证、讲授法与多媒体教学相结合。 【教学用具】 单摆、秒表、米尺、条形磁铁、装有墨水的注射器(演示振动图象用)、CAI课件。 【教学过程】 (一)引入新课 教师:1862年,18岁的伽利略离开神学院进入比萨大学学习医学,他的心中充满着奇妙的幻想和对自然科学的无穷疑问,一次他在比萨大学忘掉了向上帝祈祷,双眼注视着天花板上悬
4、垂下来摇摆不定的挂灯,右手按着左手的脉搏,口中默默地数着数字,在一般人熟视无睹的现象中,他却第一个明白了挂灯每摆动一次的时间是相等的,于是制作了单摆的模型,潜心研究了单摆的运动规律,给人类奉献了最初的能准确计时的仪器。 在第一节中我们以弹簧振子为模型研究了简谐运动,日常生活中常见到摆钟、摆锤等的振动,这种振动有什么特点呢?本节课我们来学习简谐运动的另一典型实例——单摆。 (二)进行新课 1.单摆 (1)什么是单摆 秋千和钟摆等摆动的物体最终都会停下来,是因为有空气阻力存在,我们能不能由秋千和钟摆摆动的共性,忽略空
5、气阻力,抽象出一个简单的物理模型呢? (出示各种摆的模型,帮助学生正确认识什么是单摆) ①第一种摆的悬绳是橡皮筋,伸缩不可忽略,不是单摆; ②第二种摆的悬绳质量不可忽略,不是单摆; ③第三种摆的悬绳长度不是远大于球的直径,不是单摆; ④第四种摆的上端没有固定,也不是单摆; ⑤第五种摆是单摆。 定义:如果悬挂小球的细线的伸缩和质量可以忽略,线长又比球的直径大得多,这样的装置叫单摆。 单摆是实际摆的理想化模型:线的伸缩和质量可以忽略──使摆线有一定的长度而无质量,质量全部集中在摆球上。线长比球的直径大得多,可把
6、摆球当作一个质点,此时悬线的长度就是摆长,实际单摆的摆长是从悬点到小球的球心。单摆的运动忽略了空气阻力,实际的单摆在观察的时间内可以不考虑各种阻力。 (2)单摆的摆动 ①单摆的平衡位置 当摆球静止在O点时,摆球受到重力G和悬线的拉力F’作用,这两个力是平衡的。O点就是单摆的平衡位置。 ②单摆的摆动 演示:用力将摆球拉离平衡位置,使悬线与竖直方向成一角度,然后释放。 分析:摆球被拉到位置A’时,摆球受到重力G,绳的拉力F’,且G与拉力F’不再平衡,所以摆球在这两个力的共同作用下,将沿以O为中点的一段圆弧做往复运动
7、。 结论:摆球沿着以平衡位置O为中点的一段圆弧做往复运动,这就是单摆的振动。 (用CAI课件模拟摆球所做的运动) 2、单摆做简谐运动 (1)单摆的回复力 摆球受到的重力G和悬线拉力F’,在单摆振动时,一方面要使单摆振动,另一方面还要提供摆球沿圆弧的运动的向心力。在研究摆球沿圆弧的运动情况时,可以不考虑与摆球运动方向垂直的力,而只考虑沿摆球运动方向的力,如图所示。 因为F’垂直于v,所以,我们可将重力G分解到速度v的方向及垂直于v的方向。且G1=Gsinθ=mgsinθ,G2=Gcosθ=mgcosθ。 重力G
8、沿圆弧切线方向的分力G1=mgsinθ是沿摆球运动方向的力,正是这个力提供了使摆球振动的回复力,也可以说成是摆球沿运动方向的合力提供了摆球摆动的回复力。 F=G1=mgsinθ (2)单摆做简谐运动的推证 在偏角很小时,sinθ≈ 又回复力F=mgsinθ 所以单摆的回复力为 (其中x表示摆
此文档下载收益归作者所有