欢迎来到天天文库
浏览记录
ID:20420043
大小:338.50 KB
页数:11页
时间:2018-10-12
《课后习题解答参考》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、习题解答第一章1.1把下列不同进制数写成按权展开式:⑴(4517.239)10=4×103+5×102+1×101+7×100+2×10-1+3×10-2+9×10-3⑵(10110.0101)2=1×24+0×23+1×22+1×21+0×20+0×2-1+1×2-2+0×2-3+1×2-4⑶(325.744)8=3×82+2×81+5×80+7×8-1+4×8-2+4×8-3⑷(785.4AF)16=7×162+8×161+5×160+4×16-1+A×16-2+F×16-31.2完成下列二进制表达式的运算:1.3将下列二进制数转换成
2、十进制数、八进制数和十六进制数:⑴(1110101)2=(165)8=(75)16=7×16+5=(117)10⑵(0.110101)2=(0.65)8=(0.D4)16=13×16-1+4×16-2=(0.828125)10⑶(10111.01)2=(27.2)8=(17.4)16=1×16+7+4×16-1=(23.25)101.4将下列十进制数转换成二进制数、八进制数和十六进制数,精确到小数点后5位:⑴(29)10=(1D)16=(11101)2=(35)8⑵(0.207)10=(0.34FDF)16=(0.00111)2=(0.1
3、5176)8采用0舍1入规则⑶(33.333)10=(21.553F7)16=(100001.01011)2=(41.25237)81.5如何判断一个二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除?解:一个二进制正整数被(2)10除时,小数点向左移动一位,被(4)10除时,小数点向左移动两位,能被整除时,应无余数,故当b1=0和b0=0时,二进制正整数B=b6b5b4b3b2b1b0能否被(4)10整除.1.6写出下列各数的原码、反码和补码:⑴0.1011[0.1011]原=0.1011;[0.1011]反=0.1011
4、;[0.1011]补=0.1011⑵0.0000[0.000]原=0.0000;[0.0000]反=0.0000;[0.0000]补=0.0000⑶-10110[-10110]原=110110;[-10110]反=101001;[-10110]补=1010101.7已知[N]补=1.0110,求[N]原,[N]反和N.解:由[N]补=1.0110得:[N]反=[N]补-1=1.0101,[N]原=1.1010,N=-0.10101.8用原码、反码和补码完成如下运算:⑴0000101-0011010[0000101-0011010]原=10
5、010101;∴0000101-0011010=-0010101。[0000101-0011010]反=[0000101]反+[-0011010]反=00000101+11100101=11101010∴0000101-0011010=-0010101[0000101-0011010]补=[0000101]补+[-0011010]补=00000101+11100110=11101011∴0000101-0011010=-0010101⑵0.010110-0.100110[0.010110-0.100110]原=1.010000;∴0.01
6、0110-0.100110=-0.010000。[0.010110-0.100110]反=[0.010110]反+[-0.100110]反=0.010110+1.011001=1.101111∴0.010110-0.100110=-0.010000;[0.010110-0.100110]补=[0.010110]补+[-0.100110]补=0.010110+1.011010=1.110000∴0.010110-0.100110=-0.0100001.9分别用“对9的补数”和“对10的补数”完成下列十进制数的运算: ⑴ 2550-123[2
7、550-123]9补=[2550]9补+[-123]9补=02550+99876=02427∴2550-123=2427[2550-123]10补=[2550]10补+[-123]10补=02550+99877=02427∴2550-123=2427⑵537-846[537-846]9补=[537]9补+[-846]9补=0537+9153=9690∴537-846=-309[537-846]10补=[537]10补+[-846]10补=0537+9154=9691∴537-846=-3091.10将下列8421BCD码转换成二进制数和十
8、进制数:⑴(0110,1000,0011)8421BCD=(1010101011)2=(683)10⑵(0100,0101.1001)8421BCD=(101101.11100110)2=(4
此文档下载收益归作者所有