欢迎来到天天文库
浏览记录
ID:20407031
大小:315.50 KB
页数:19页
时间:2018-10-13
《离散数学专科期末复习提要》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、《离散数学》专科期末复习提要四川电大孙继荣2004年5月《离散数学》使用的教材为中央电大出版的《离散数学》(刘叙华等编)和《离散数学学习指导书》(虞恩蔚等编)。离散数学主要研究离散量结构及相互关系,使学生得到良好的数学训练,提高学生抽象思维和逻辑推理能力,为从事计算机的应用提供必要的描述工具和理论基础。其先修课程为:高等数学、线性代数;后续课程为:数据结构、数据库、操作系统、计算机网络等。课程的主要内容1、集合论部分(集合的基本概念和运算、关系及其性质);2、数理逻辑部分(命题逻辑、谓词逻辑);3、图论
2、部分(图的基本概念、树及其性质)。4、布尔代数(此部分对专科要求不高)学习建议离散数学是理论性较强的学科,学习离散数学的关键是对离散数学(集合论、数理逻辑和图论)有关基本概念的准确掌握,对基本原理及基本运算的运用,并要多做练习。教学要求的层次各章教学要求的层次为了解、理解和掌握。了解即能正确判别有关概念和方法;理解是能正确表达有关概念和方法的含义;掌握是在理解的基础上加以灵活应用。一、各章复习要求与重点第一章集合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集
3、合的交、并、差、补等运算及其运算律(交换律、结合律、分配律、吸收律、DeMorgan律等),文氏(Venn)图3、序偶与迪卡尔积本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明[复习要求]1、理解集合、元素、子集、空集、全集、集合的包含、相等、幂集等基本概念。2、掌握集合的表示法和集合的交、并、差、补等基本运算。3、掌握集合运算基本规律,证明集合等式的方法。4、了解序偶与迪卡尔积的概念,掌握迪卡尔积的运算。[疑难解析]1、集合的概念因为集合的概念学生在中学阶段已经学过,这里只多了一个幂集概念,
4、重点对幂集加以掌握,一是掌握幂集的构成,一是掌握幂集元数为2n。2、集合恒等式的证明19通过对集合恒等式证明的练习,既可以加深对集合性质的理解与掌握;又可以为第三章命题逻辑中公式的基本等价式的应用打下良好的基础。实际上,本章做题是一种基本功训练,尤其要求学生重视吸收律和重要等价式在证明中的特殊作用。[例题分析]例1设A,B是两个集合,A={1,2,3},B={1,2},则。解于是例2设,试求:(1);(2);(3);(4);(5);(6)。解(1)(2)(3)(4)(5)(6)例3试证明证明第二章二元关
5、系[复习知识点]1、关系、关系矩阵与关系图2、复合关系与逆关系3、关系的性质(自反性、对称性、反对称性、传递性)4、关系的闭包(自反闭包、对称闭包、传递闭包)5、等价关系与等价类6、偏序关系与哈斯图(Hasse)、极大/小元、最大/小元、上/下界、最小上界、最大下界7、函数及其性质(单射、满射、双射)8、复合函数与反函数本章重点内容:二元关系的概念、关系的性质、关系的闭包、等价关系、半序关系、映射的概念19[复习要求]1、理解关系的概念:二元关系、空关系、全关系、恒等关系;掌握关系的集合表示、关系矩阵和
6、关系图、关系的运算。2、掌握求复合关系与逆关系的方法。3、理解关系的性质(自反性、对称性、反对称性、传递性),掌握其判别方法(定义、矩阵、图)。4、掌握求关系的闭包(自反闭包、对称闭包、传递闭包)的方法。5、理解等价关系和偏序关系的概念,掌握等价类的求法和偏序关系做哈斯图的方法,极大/小元、最大/小元、上/下界、最小上界、最大下界的求法。6、理解函数概念:函数、函数相等、复合函数和反函数。7、理解单射、满射、双射等概念,掌握其判别方法。[疑难解析]1、关系的概念 关系的概念是第二章全章的基础,又是第一
7、章集合概念的应用。因此,学生应该真正理解并熟练掌握二元关系的概念及关系矩阵、关系图表示。2、关系的性质及其判定 关系的性质既是对关系概念的加深理解与掌握,又是关系的闭包、等价关系、半序关系的基础。对于四种性质的判定,可以依据教材中P49上总结的规律。这其中对传递性的判定,难度稍大一点,这里要提及两点:一是不破坏传递性定义,可认为具有传递性。如空关系具有传递性,同时空关系具有对称性与反对称性,但是不具有自反性。另一点是介绍一种判定传递性的“跟踪法”,即若,则。如若,则有,且。3、关系的闭包在理解掌握关系
8、闭包概念的基础上,主要掌握闭包的求法。关键是熟记三个定理的结论:定理2,;定理3,;定理4,推论。4、半序关系及半序集中特殊元素的确定理解与掌握半序关系与半序集概念的关键是哈斯图。哈斯图画法掌握了,对于确定任一子集的最大(小)元,极大(小)元也就容易了。这里要注意,最大(小)元与极大(小)元只能在子集内确定,而上界与下界可在子集之外的全集中确定,最小上界为所有上界中最小者,最小上界再小也不小于子集中的任一元素,可以与某一元素相等,最大下界也
此文档下载收益归作者所有