欢迎来到天天文库
浏览记录
ID:20360714
大小:200.00 KB
页数:10页
时间:2018-10-09
《勾股定理的历史》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、勾股定理的历史勾股定理是“人类最伟大的十个科学发现之一”,是初等几何中的一个基本定理。那么大家知道多少勾股定理的别称呢?我可以告诉大家,有:毕达哥拉斯定理,商高定理,百牛定理,驴桥定理和埃及三角形等。所谓勾股定理,就是指“在直角三角形中,两条直角边的平方和等于斜边的平方。”这个定理有十分悠久的历史,几乎所有文明古国(希腊、中国、埃及、巴比伦、印度等)对此定理都有所研究。勾股定理在西方被称为毕达哥拉斯定理,相传是古希腊数学家兼哲学家毕达哥拉斯(Pythagoras,公元前572?~公元前497?)于公元前550年首先发现的。但毕达哥
2、拉斯对勾股定理的证明方法已经失传。著名的希腊数学家欧几里得(Euclid,公元前330~公元前275)在巨著《几何原本》(第Ⅰ卷,命题47)中给出一个很好的证明。(右图为欧几里得和他的证明图)中国古代对这一数学定理的发现和应用,远比毕达哥拉斯早得多。中国最早的一部数学著作——《周髀算经》的开头,记载着一段周公向商高请教数学知识的对话:周公问:“我听说您对数学非常精通,我想请教一下:天没有梯子可以上去,地也没法用尺子去一段一段丈量,那么怎样才能得到关于天地得到数据呢?”商高回答说:“数的产生来源于对方和圆这些形体的认识。其中有一条原
3、理:当直角三角形‘矩'得到的一条直角边‘勾'等于3,另一条直角边’股'等于4的时候,那么它的斜边'弦'就必定是5。这个原理是大禹在治水的时候就总结出来的呵。” 如果说大禹治水因年代久远而无法确切考证的话,那么周公与商高的对话则可以确定在公元前1100年左右的西周时期,比毕达哥拉斯要早了五百多年。其中所说的勾3股4弦5,正是勾股定理的一个应用特例。所以现在数学界把它称为“勾股定理”是非常恰当的。-10-在稍后一点的《九章算术》一书中(约在公元50至100年间)(右图),勾股定理得到了更加规范的一般性表达。书中的《勾股章》说;“把勾和
4、股分别自乘,然后把它们的积加起来,再进行开方,便可以得到弦”。中国古代的数学家们不仅很早就发现并应用勾股定理,而且很早就尝试对勾股定理作理论的证明。最早对勾股定理进行证明的,是三国时期吴国的数学家赵爽。赵爽创制了一幅“勾股圆方图”,用形数结合得到方法,给出了勾股定理的详细证明(右图)。赵爽的这个证明可谓别具匠心,极富创新意识。他用几何图形的截、割、拼、补来证明代数式之间的恒等关系,既具严密性,又具直观性,为中国古代以形证数、形数统一、代数和几何紧密结合、互不可分的独特风格树立了一个典范。以后的数学家大多继承了这一风格并且有发展,只
5、是具体图形的分合移补略有不同而已。例如稍后一点的刘徽在证明勾股定理时也是用以形证数的方法,中国古代数学家们对于勾股定理的发现和证明,在世界数学史上具有独特的贡献和地位。尤其是其中体现出来的“形数统一”的思想方法,更具有科学创新的重大意义。勾股定理的证明据不完全统计,勾股定理的证明方法已经多达400多种了。下面我便向大家介绍几种十分著名的证明方法。【证法1】(赵爽证明)以a、b为直角边(b>a),以c为斜边作四个全等的直角三角形,则每个直角三角形的面积等于.把这四个直角三角形拼成如图所示形状.∵RtΔDAH≌RtΔABE,∴∠HDA
6、=∠EAB.∵∠HAD+∠HAD=90º,∴∠EAB+∠HAD=90º,∴ABCD是一个边长为c的正方形,它的面积等于c2.∵EF=FG=GH=HE=b―a,∠HEF=90º.∴EFGH是一个边长为b―a的正方形,它的面积等于.-10-∴∴.【证法2】(课本的证明) 做8个全等的直角三角形,设它们的两条直角边长分别为a、b,斜边长为c,再做三个边长分别为a、b、c的正方形,把它们像上图那样拼成两个正方形.从图上可以看到,这两个正方形的边长都是a+b,所以面积相等.即,整理得.【证法3】(1876年美国总统Garfield证明)以a
7、、b为直角边,以c为斜边作两个全等的直角三角形,则每个直角三角形的面积等于.把这两个直角三角形拼成如图所示形状,使A、E、B三点在一条直线上.∵RtΔEAD≌RtΔCBE,∴∠ADE=∠BEC.∵∠AED+∠ADE=90º,∴∠AED+∠BEC=90º.∴∠DEC=180º―90º=90º.∴ΔDEC是一个等腰直角三角形,它的面积等于.又∵∠DAE=90º,∠EBC=90º,∴AD∥BC.∴ABCD是一个直角梯形,它的面积等于∴.∴.【趣闻】:在1876-10-年一个周末的傍晚,在美国华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的
8、美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子
此文档下载收益归作者所有