欢迎来到天天文库
浏览记录
ID:20171131
大小:61.50 KB
页数:6页
时间:2018-10-08
《行测常用解题技巧》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、行测常用解题技巧一、最有效、最基本的方法难度判断法 定义:难度判断法是指根据试题的难度确定答案的基本位置。 基本原理:由于行测全是四选一的客观题,所以无论如何答案都在ABCD这四个选项中,此其一。其二,按照试题设置的原则,答案分布应当均衡,因此各个答案出现的机率要差不多。到底在不同的试题中,哪种题的答案放在考试#大收集哪个位置?一个基本的原则就是,难题的答案放前边,易题的答案放后边。由此就涉及如何判断难题和易题。难题是指试题涉及较多的知识和信息,信息之间缝隙太大,试题与答案之间不容易建立起直接联系的题。易题是指试题内容为广大
2、报考者熟悉,多数人都可能做得起的题。由此,总体来说,难题的答案在AB,易题的答案在CD。那么,又怎样确定哪个答案在A,哪个答案在B呢?一般说来,难得无从下手的答案在A,很难但可以倒回去验证的答案在B。易题中哪个选C,哪个选D呢?一般说来,估计多数人都做得起的题答案在D,估计多数人都做得起但要花较多时间的答案在C。 简而言之,就是最难的题答案常在A,最易的题答案在D。很难但可以倒回去验证的答案在B,容易但费时的答案在C。 但是,在不同的题中难题和易题的判断标准显然不一样。相对比较容易看出什么是难题和易题的在数学运算、资料分析、
3、演绎推理等题型上。但在常识判断中,根据研究,常识判断中的难题是题干比较短小、关键词汇不多的题。为什么这样说呢?这为词语越少,词语之间能够形成逻辑链的可能性就越小。这样,即是一个简单的常识;你要是忘了,是无论如何都无法从题干和选项中推知答案的,这是常识判断的难做之处。相反,那些题干比较长的常识判断,反而容易从词汇之间的逻辑关系之间找到蛛丝马迹,根据有限信息提示,从而把答案做对。我们来看例子。 例:对某单位的100名员工进行调查,结果发现他们喜欢看球赛和电影、戏剧。其中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看
4、球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,则只喜欢看电影的有 A、22人B、28人C、30人D、36人(05中央A) 我们先根据难度来判断,这道题有多难。如果以很难、难、易、很易为四级的话,估计这道题的难度为很难。因为看了之后,发觉这道题的答案和题之间找不出可以互相支持的地方。一般人简直无从下手。这时候,放弃做题是必要的,但放弃答案是不行的。这时候,你就选择A,对这种牛吃南瓜开不起头的答案选A的正确率非常高。我们来看考过的题中的难题与答案分布。 二、对数学运算比较有效的方法联系
5、法 联系法是指数字之间存在着一些必然联系,通过这些联系可以找出答案。比如在涉及距离速度的题中,出现了7和21、4和12等数字,你要联想要答案可能跟3有关,而不是跟5、8等其他数字有关。 例:甲乙丙三人沿着400米环形跑道进行800米跑比赛,当甲跑1圈时,乙比甲多跑了1/7圈。丙比甲少跑1/7圈。如果他们各自跑步的速度始终不变,那么,当乙到达终点时,甲在丙前面: A、85米B.90米C.100米D.105米(05中央A) 我们不用做题,就看题干中的数字哪些和答案相关,看能否选出正确答案。看:800,1,1/7,1/7。你觉
6、得最可能跟哪个数字有关:85,90,100,105。应当想到,最核心的数字有3个:1,7,8。这样,答案基本不可能跟尾数是5的有关。可以说A、D都不是答案。在90和100中,哪个更接近答案呢?1001因为比较明显的感觉是100(7+1):800。所以选C。这样,我们就绕过了从题中算出答案的麻烦。 考行测,有一句经典的话:认认真真抓形式,扎扎实实有过场。从这题里你感觉到了吗?如果没有,再看一题。 例:姐弟俩出游,弟弟先走一步,每分钟走40米,走了80米后姐姐去追他。姐姐每分钟走60米,姐姐带的小狗每分钟走150米。小狗追上弟弟
7、后又转去找姐姐,碰上了姐姐又转去追弟弟,这样跑来跑去,直到姐弟相遇考试#大收集才停下来。问小狗总共跑了多少米? A.600米B.800米C.1200米D.1600米(03中央A) 这道题有点难,你可能做不起。按一般的参考书的讲法,你可以倒回去验证。这样你会选出正确的答案。但我想用不着。首先看数字,40,60,150,肯定首要要能整除150,这样就只有两个答案备选,即600和1200。但是,最终答案应该是速度的三者速度的最小公倍数,三者之间关系最密切,答案要是三者的最小公倍数。只有A.600米才行。这样答案就选A。但在这里边,
8、抛开了一个数80,因为它是另类。 懂了吗?现在你来选这道题的答案是哪个? 例5:甲、乙、丙三人沿湖边散步,同时从湖边一固定点出发,甲按顺时针方向行走,乙与丙按逆时针方向行走,甲第一次遇到乙后1又1/4分钟遇到丙,再过3又3/4分钟第二次遇到乙。已知乙的速度是
此文档下载收益归作者所有