24-平面曲线的曲率

24-平面曲线的曲率

ID:20036644

大小:920.00 KB

页数:18页

时间:2018-10-09

24-平面曲线的曲率_第1页
24-平面曲线的曲率_第2页
24-平面曲线的曲率_第3页
24-平面曲线的曲率_第4页
24-平面曲线的曲率_第5页
资源描述:

《24-平面曲线的曲率》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、平面曲线的曲率一、曲率的概念二、曲率的计算公式三、参数方程下曲率的计算公式四、曲率圆、曲率中心你认为应该如何描述曲线的弯曲程度?单位弧长上的转角︵一、曲率的概念例1解求半径为R的圆上任意一点处的曲率.如图所示,在圆上任取一点M,则︵故即圆上点的曲率处处相同:半径越小的圆,弯曲得越厉害.证如图所示,曲线在故又从而二、曲率的计算公式例2解直线上任意一点处的曲率均为零.俗话说,直线不弯曲.例4解会出现导数的分母为零的情形,相同,对称,故原问题可以转为求曲线图形关于将它们代入曲率计算公式中即可得:三、参数方程下曲率的计算公式例3解哪一点曲率最大,哪一点曲率最小.利用参数方程求导法求出故在各象

2、限中++ⅣⅢⅡⅠ由此可得:在有些实际问题中,曲率圆曲率半径曲率中心处可用一个相应的圆来描述曲线的弯曲程度作其法线,在法线指向曲线凹向的一侧上取一点Q,使以Q为中心,R为半径所作的圆称为曲线在点M处的曲率圆,圆心Q称为曲率中心,R称为曲率半径.三、曲率圆、曲率中心曲率圆与曲线在点M处相切,且在点M处两者曲率相同.曲率圆与曲线在点M处具有相同的一、二阶导数.当讨论曲线在点M处与一、二阶导数有关的局部性质时,可以通过讨论其相应的曲率圆的局部性质来实现.曲率圆的性质则曲线在点曲率中心的坐标证则曲线在点由于故有其斜率为曲线在点M处切线的斜率为从而,有(1)(2)由(1),(2)两式消去由于曲率

3、圆总是位于曲线凹向的一侧,所以故对上式两边开方得由(2)式,得画画图更清楚例5解曲率半径、曲率中心和曲率圆方程.曲率中心为曲率圆的方程为

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。