资源描述:
《1平板车装货问题与展厅安保问题lingo解法》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、第一题基本模型:决策变量:引入变量Xij,是第j辆车上第i种包装箱的数量(i=l,2,3…7。j=l,2);ni是第i种包箱所装件数,ti是第i种包箱的厚度,wi第i中包厢的重量,clj第j节车的长度,cwj第j车的载重量。S为特殊限制(s=302.7)目标函数:约束条件:两节车的装箱数不能超过需要装的件X-1+X-2-rii(i=l,2,3,4,5,6,7)每节车可装的长度不能超过车能提供的长度(j=l,2)每节车能装的重量不能超过车能承受的重量(>1,2)对于C5,C6,C7三类包装箱的总数特别限制ZfGV/l+X'2)-Si=l
2、整数线性规划模型:maxf(%)=2^(〜+么StrXi+X-2-rii(i=l,2,3,4,5,6,7)(j二1,2)i=lWiXij—Cuy(j=i,2)z=7EaGv/,+xJ-sModel:!铁路平板车装货问题;sets:cars/1..2/:1,wet;boxes/I•.7/:t,w,n;link(boxes,cars):x;endsets!这里是数据;data:m=4;1=1020,1020;wet=40000,40000;t=48.7z53.0z61.3,72.0,48.7,52.0,64.0;w=2000,3000,1
3、000,500,4000,200,100;n=8,7,9,6,6,4,8;enddata!目标函数;max=@sum(boxes(i):t(i)*@sum(cars(j):x(i,j)));@for(boxes(i):@sum(cars(j)@for(cars(j):@sum(boxes(i)@for(cars(j):@sum(boxes(i)@for(cars(j):@sum(boxes(i)@for(link:@gin(x));End:x(i,j))4、wet(j));Ii#GT#m:t(i)*x(i,j))<302.7);Feasiblesolutionfound.Objectivevalue:2039.900Objectivebound:2040.000Infeasibilities:0.000000Extendedsolversteps:702229Totalsolveriterations:2947923VariableValueReducedCostM4.0000000.000000L(1)1020.0000.000000L(2)1020.0000.000000WET(1)
5、40000.000.000000WET(2)40000.000.000000T(1)48.700000.000000T(2)53.000000.000000T(3)61.300000.000000T(4)72.000000.000000T(5)48.700000.000000T(6)52.000000.000000T(7)64.000000.000000W(1)2000.0000.000000W(2)3000.0000.000000W(3)1000.0000.000000W(4)500.00000.000000W(5)4000.000
6、0.000000W(6)200.00000.000000W(7)100.00000.000000N(1)8.0000000.000000N(2)7.0000000.000000N(3)9.0000000.000000N(4)6.0000000.000000N(5)6.0000000.000000N(6)4.0000000.000000N(7)8.0000000.000000X(1,1)8.000000-48.70000X(1,2)0.000000-48.70000X(2,1)5.000000-53.00000X(2,2)0.00000
7、0-53.00000X(3,1)1.000000-61.30000X(3,2)6.000000-61.30000X(4,1)1.000000-72.00000X(4,2)5.000000-72.00000X(5,1)0.000000-48.70000X(5,2)6.000000-48.70000X(6,1)2.000000-52.00000X(6,2)0.000000-52.00000X(7,1)2.000000-64.00000X(7,2)0.000000-64.00000RowSlackorSurplusDualPrice1203
8、9.9001.00000020.0000000.00000032.0000000.00000042.0000000.00000050.0000000.00000060.0000000.00000072.0000000.0