资源描述:
《均值不等式的证明》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、均值不等式的证明第一篇:常用均值不等式及证明证明常用均值不等式及证明证明这四种平均数满足hn?gn?an?qn?、ana1、a2、?r?,当且仅当a1?a2???an时取“=”号仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用均值不等式的变形:(1)对实数a,b,有a222?b2?2ab(当且仅当a=b时取“=”号),a,b?0?2ab(4)对实数a,b,有a?a-b??b?a-b?a2?b2?2ab?0(5)对非负实数a,b,有(8)对实数a,b,c,有a2?b2?c2?ab?bc
2、?aca?b?c?abc(10)对实数a,b,c,有均值不等式的证明:方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等用数学归纳法证明,需要一个辅助结论。引理:设a≥0,b≥0,则?a?b??an?na?n-1?bn注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0,a+b≥0(用数学归纳法)。当n=2时易证;假设当n=k时命题成立,即那么当n=k+1时,不妨设ak?1是则设a1,a2,?,ak?1中最大者,kak?1?a1?a2???ak?1s?a1?a2???ak 均值不等
3、式的证明第一篇:常用均值不等式及证明证明常用均值不等式及证明证明这四种平均数满足hn?gn?an?qn?、ana1、a2、?r?,当且仅当a1?a2???an时取“=”号仅是上述不等式的特殊情形,即d(-1)≤d(0)≤d(1)≤d(2)由以上简化,有一个简单结论,中学常用均值不等式的变形:(1)对实数a,b,有a222?b2?2ab(当且仅当a=b时取“=”号),a,b?0?2ab(4)对实数a,b,有a?a-b??b?a-b?a2?b2?2ab?0(5)对非负实数a,b,有(8)对实数a,b,c,有a2?b2?c2?ab?bc?aca
4、?b?c?abc(10)对实数a,b,c,有均值不等式的证明:方法很多,数学归纳法(第一或反向归纳)、拉格朗日乘数法、琴生不等式法、排序不等式法、柯西不等式法等等用数学归纳法证明,需要一个辅助结论。引理:设a≥0,b≥0,则?a?b??an?na?n-1?bn注:引理的正确性较明显,条件a≥0,b≥0可以弱化为a≥0,a+b≥0(用数学归纳法)。当n=2时易证;假设当n=k时命题成立,即那么当n=k+1时,不妨设ak?1是则设a1,a2,?,ak?1中最大者,kak?1?a1?a2???ak?1s?a1?a2???ak用归纳假设下面介绍个
5、好理解的方法琴生不等式法琴生不等式:上凸函数f?x?,x1,x2,?,xn是函数f?x?在区间(a,b)内的任意n个点,设f?x??lnx,f?x?为上凸增函数所以,在圆中用射影定理证明(半径不小于半弦)第二篇:均值不等式证明均值不等式证明一、已知x,y为正实数,且x+y=1求证xy+1/xy≥17/41=x+y≥2√(xy)得xy≤1/4而xy+1/xy≥2当且仅当xy=1/xy时取等也就是xy=1时画出xy+1/xy图像得01时,单调增而xy≤1/4∴xy+1/xy≥(1/4)+1/(1/4)=4+1/4=17/4得证继续追问:拜托,
6、用单调性谁不会,让你用均值定理来证补充回答:我真不明白我上面的方法为什么不是用均值不等式证的法二:证xy+1/xy≥17/4即证4(xy)²-17xy+4≥0即证(4xy-1)(xy-4)≥0即证xy≥4,xy≤1/4而x,y∈r+,x+y=1显然xy≥4不可能成立∵1=x+y≥2√(xy)∴xy≤1/4,得证法三:∵同理0xy+1/xy-17/4=(4x²y²-4-17xy)/4xy=(1-4xy)(4-xy)/4xy≥0∴xy+1/xy≥17/4试问怎样叫“利用均值不等式证明”,是说只能用均值不等式不能穿
7、插别的途径?!二、已知a>b>c,求证:1/(a-b)+1/(b-c)+1/(c-a)>0a-c=(a-b)+(b-c)≥2√(a-b)*(b-c)于是c-a≤-2√(a-b)*(b-c)<0即:1/(c-a)≥-1/【2√(a-b)*(b-c)】那么1/(a-b)+1/(b-c)+1/(c-a)≥1/(a-b)+1/(b-c)-1/【2√(a-b)*(b-c)】≥2/【√(aqrt{}≥(a1+a2+..an)/n≥n次根号(a1a2a3..an)≥n/(1/a1+1/a2+..+1/an)证明:1.sqrt((
8、(a1)+(a2)+..(an))/n)≥(a1+a2+..an)/n两边平方,即证((a1)+(a2)+..(an))≥(a1+a2+..an)/n(1)如果你知道柯西不等式的