《概率论与数理统计》课后习题答案chapter1

《概率论与数理统计》课后习题答案chapter1

ID:19847825

大小:1.09 MB

页数:20页

时间:2018-10-07

《概率论与数理统计》课后习题答案chapter1_第1页
《概率论与数理统计》课后习题答案chapter1_第2页
《概率论与数理统计》课后习题答案chapter1_第3页
《概率论与数理统计》课后习题答案chapter1_第4页
《概率论与数理统计》课后习题答案chapter1_第5页
资源描述:

《《概率论与数理统计》课后习题答案chapter1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、20习题1.1解答1.将一枚均匀的硬币抛两次,事件分别表示“第一次出现正面”,“两次出现同一面”,“至少有一次出现正面”。试写出样本空间及事件中的样本点。解:(正,正),(正,反),(反,正),(反,反)(正,正),(正,反);(正,正),(反,反)(正,正),(正,反),(反,正)2.在掷两颗骰子的试验中,事件分别表示“点数之和为偶数”,“点数之和小于5”,“点数相等”,“至少有一颗骰子的点数为3”。试写出样本空间及事件中的样本点。解:;;;;;3.以分别表示某城市居民订阅日报、晚报和体育报。试用表示以

2、下事件:(1)只订阅日报;(2)只订日报和晚报;(3)只订一种报;(4)正好订两种报;(5)至少订阅一种报;(6)不订阅任何报;(7)至多订阅一种报;(8)三种报纸都订阅;(9)三种报纸不全订阅。解:(1);(2);(3);(4);(5);(6);(7)或(8);(9)4.甲、乙、丙三人各射击一次,事件分别表示甲、乙、丙射中。试说明下列事件所表示的结果:,,,,,.解:甲未击中;乙和丙至少一人击中;甲和乙至多有一人击中或甲和乙至少有一人未击中;甲和乙都未击中;甲和乙击中而丙未击中;甲、乙、丙三人至少有两人

3、击中。5.设事件满足,试把下列事件表示为一些互不相容的事件的和:,,.解:如图:206.若事件满足,试问是否成立?举例说明。解:不一定成立。例如:,,,那么,,但。7.对于事件,试问是否成立?举例说明。解:不一定成立。例如:,,,那么,但是。8.设,,试就以下三种情况分别求:(1),(2),(3).解:(1);(2);(3)。9.已知,,求事件全不发生的概率。20解:=10.每个路口有红、绿、黄三色指示灯,假设各色灯的开闭是等可能的。一个人骑车经过三个路口,试求下列事件的概率:“三个都是红灯”=“全红”;

4、“全绿”;“全黄”;“无红”;“无绿”;“三次颜色相同”;“颜色全不相同”;“颜色不全相同”。解:;;;;.11.设一批产品共100件,其中98件正品,2件次品,从中任意抽取3件(分三种情况:一次拿3件;每次拿1件,取后放回拿3次;每次拿1件,取后不放回拿3次),试求:(1)取出的3件中恰有1件是次品的概率;(2)取出的3件中至少有1件是次品的概率。解:一次拿3件:(1);(2);每次拿一件,取后放回,拿3次:(1);(2);每次拿一件,取后不放回,拿3次:(1);(2)12.从中任意选出3个不同的数字,

5、试求下列事件的概率:,。20解:;或13.从中任意选出4个不同的数字,计算它们能组成一个4位偶数的概率。解:14.一个宿舍中住有6位同学,计算下列事件的概率:(1)6人中至少有1人生日在10月份;(2)6人中恰有4人生日在10月份;(3)6人中恰有4人生日在同一月份;解:(1);(2);(3)15.从一副扑克牌(52张)任取3张(不重复),计算取出的3张牌中至少有2张花色相同的概率。解:或20习题1.2解答1.假设一批产品中一、二、三等品各占60%,30%、10%,从中任取一件,结果不是三等品,求取到的是

6、一等品的概率。解:令“取到的是等品”,。2.设10件产品中有4件不合格品,从中任取2件,已知所取2件产品中有1件不合格品,求另一件也是不合格品的概率。解:令“两件中至少有一件不合格”,“两件都不合格”3.为了防止意外,在矿内同时装有两种报警系统I和II。两种报警系统单独使用时,系统I和II有效的概率分别0.92和0.93,在系统I失灵的条件下,系统II仍有效的概率为0.85,求(1)两种报警系统I和II都有效的概率;(2)系统II失灵而系统I有效的概率;(3)在系统II失灵的条件下,系统I仍有效的概率。解

7、:令“系统(Ⅰ)有效”,“系统(Ⅱ)有效”则(1)(2)(3)4.设,证明事件与独立的充要条件是证::与独立,与也独立。:又而由题设20即,故与独立。5.设事件与相互独立,两个事件只有发生的概率与只有发生的概率都是,求和.解:,又与独立即。6.证明若>0,>0,则有(1)当与独立时,与相容;(2)当与不相容时,与不独立。证明:(1)因为与独立,所以,与相容。(2)因为,而,,与不独立。7.已知事件相互独立,求证与也独立。证明:因为、、相互独立,与独立。8.甲、乙、丙三机床独立工作,在同一段时间内它们不需要

8、工人照顾的概率分别为0.7,0.8和0.9,求在这段时间内,最多只有一台机床需要工人照顾的概率。解:令分别表示甲、乙、丙三机床不需要工人照顾,那么令表示最多有一台机床需要工人照顾,20那么9.如果构成系统的每个元件能正常工作的概率为,(称为元件的可靠性),假设各元件能否正常工作是相互独立的,计算下面各系统的可靠性。系统I12nn+1n+22n系统II1n+12n+2n2n注:利用第7题的方法可以证明与时独立。解:令“系统(Ⅰ)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。