欢迎来到天天文库
浏览记录
ID:19782178
大小:379.00 KB
页数:8页
时间:2018-10-06
《实验4时域采样理论及频域采样定理验证》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、课程名称实验成绩指导教师实验报告院系班级学号姓名日期实验4时域采样理论与频域采样定理验证一一、实验目的1时域采样理论与频域采样理论是数字信号处理中的重要理论。要求掌握模拟信号采样前后频谱的变化,以及如何选择采样频率才能使采样后的信号不丢失信息;要求掌握频率域采样会引起时域周期化的概念,以及频率域采样定理及其对频域采样点数选择的指导作用。二、实验原理及方法时域采样定理的要点是:(a)对模拟信号以间隔T进行时域等间隔理想采样,形成的采样信号的频谱是原模拟信号频谱以采样角频率()为周期进行周期延拓。公式为:(b)采样频率必须大于
2、等于模拟信号最高频率的两倍以上,才能使采样信号的频谱不产生频谱混叠。利用计算机计算上式并不方便,下面我们导出另外一个公式,以便用计算机上进行实验。理想采样信号和模拟信号之间的关系为:对上式进行傅立叶变换,得到:在上式的积分号内只有当时,才有非零值,因此:上式中,在数值上=,再将代入,得到:上式的右边就是序列的傅立叶变换,即上式说明理想采样信号的傅立叶变换可用相应的采样序列的傅立叶变换得到,只要将自变量ω用代替即可。频域采样定理的要点是:a)对信号x(n)的频谱函数X(ejω)在[0,2π]上等间隔采样N点,得到则N点IDF
3、T[]得到的序列就是原序列x(n)以N为周期进行周期延拓后的主值区序列,公式为:(b)由上式可知,频域采样点数N必须大于等于时域离散信号的长度M(即N≥M),才能使时域不产生混叠,则N点IDFT[]得到的序列就是原序列x(n),即=x(n)。如果N>M,比原序列尾部多N-M个零点;如果N4、的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。因此放在一起进行实验。三、实验内容及步骤(1)时域采样理论的验证。给定模拟信号,式中A=444.128,=50π,=50πrad/s,它的幅频特性曲线如图10.2.1图10.2.1的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。安照的幅频特性曲线,选取三种采样频率,即=1kHz,300Hz,200Hz。观测时间选。为使用DFT,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用,,表示。因为采样5、频率不同,得到的,,的长度不同,长度(点数)用公式计算。选FFT的变换点数为M=64,序列长度不够64的尾部加零。X(k)=FFT[x(n)],k=0,1,2,3,-----,M-1式中k代表的频率为。要求:编写实验程序,计算、和的幅度特性,并绘图显示。观察分析频谱混叠失真。(2)频域采样理论的验证。给定信号如下:编写程序分别对频谱函数在区间上等间隔采样32和16点,得到:再分别对进行32点和16点IFFT,得到:分别画出、的幅度谱,并绘图显示x(n)、的波形,进行对比和分析,验证总结频域采样理论。提示:频域采样用以下方法6、容易变程序实现。①直接调用MATLAB函数fft计算就得到在的32点频率域采样②抽取的偶数点即可得到在的16点频率域采样,即。当然也可以按照频域采样理论,先将信号x(n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得到的就是在的16点频率域采样。四、思考题如果序列x(n)的长度为M,希望得到其频谱在上的N点等间隔采样,当N7、要回答思考题。(4)附上程序清单和有关曲线。六、程序清单和信号波形1、时域采样理论的验证程序清单:%时域采样理论验证程序Tp=64/1000;%观察时间Tp=64微秒%产生M长采样序列x(n)%Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;f=n*Fs/M;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xn=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xn,M);%M点FFT[xnt)]su8、bplot(3,1,1);plot(f,abs(Xk));xlabel('f/Hz');ylabel('9、x1(jf)10、');title('x1(n)的幅度特性');%====================================================================
4、的结论,这两个采样理论具有对偶性:“时域采样频谱周期延拓,频域采样时域信号周期延拓”。因此放在一起进行实验。三、实验内容及步骤(1)时域采样理论的验证。给定模拟信号,式中A=444.128,=50π,=50πrad/s,它的幅频特性曲线如图10.2.1图10.2.1的幅频特性曲线现用DFT(FFT)求该模拟信号的幅频特性,以验证时域采样理论。安照的幅频特性曲线,选取三种采样频率,即=1kHz,300Hz,200Hz。观测时间选。为使用DFT,首先用下面公式产生时域离散信号,对三种采样频率,采样序列按顺序用,,表示。因为采样
5、频率不同,得到的,,的长度不同,长度(点数)用公式计算。选FFT的变换点数为M=64,序列长度不够64的尾部加零。X(k)=FFT[x(n)],k=0,1,2,3,-----,M-1式中k代表的频率为。要求:编写实验程序,计算、和的幅度特性,并绘图显示。观察分析频谱混叠失真。(2)频域采样理论的验证。给定信号如下:编写程序分别对频谱函数在区间上等间隔采样32和16点,得到:再分别对进行32点和16点IFFT,得到:分别画出、的幅度谱,并绘图显示x(n)、的波形,进行对比和分析,验证总结频域采样理论。提示:频域采样用以下方法
6、容易变程序实现。①直接调用MATLAB函数fft计算就得到在的32点频率域采样②抽取的偶数点即可得到在的16点频率域采样,即。当然也可以按照频域采样理论,先将信号x(n)以16为周期进行周期延拓,取其主值区(16点),再对其进行16点DFT(FFT),得到的就是在的16点频率域采样。四、思考题如果序列x(n)的长度为M,希望得到其频谱在上的N点等间隔采样,当N7、要回答思考题。(4)附上程序清单和有关曲线。六、程序清单和信号波形1、时域采样理论的验证程序清单:%时域采样理论验证程序Tp=64/1000;%观察时间Tp=64微秒%产生M长采样序列x(n)%Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;f=n*Fs/M;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xn=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xn,M);%M点FFT[xnt)]su8、bplot(3,1,1);plot(f,abs(Xk));xlabel('f/Hz');ylabel('9、x1(jf)10、');title('x1(n)的幅度特性');%====================================================================
7、要回答思考题。(4)附上程序清单和有关曲线。六、程序清单和信号波形1、时域采样理论的验证程序清单:%时域采样理论验证程序Tp=64/1000;%观察时间Tp=64微秒%产生M长采样序列x(n)%Fs=1000;T=1/Fs;Fs=1000;T=1/Fs;M=Tp*Fs;n=0:M-1;f=n*Fs/M;A=444.128;alph=pi*50*2^0.5;omega=pi*50*2^0.5;xn=A*exp(-alph*n*T).*sin(omega*n*T);Xk=T*fft(xn,M);%M点FFT[xnt)]su
8、bplot(3,1,1);plot(f,abs(Xk));xlabel('f/Hz');ylabel('
9、x1(jf)
10、');title('x1(n)的幅度特性');%====================================================================
此文档下载收益归作者所有