生物医学工程专业毕业论文 [精品论文] 基于医学信息数据仓库的数据挖掘研究

生物医学工程专业毕业论文 [精品论文] 基于医学信息数据仓库的数据挖掘研究

ID:19653876

大小:13.76 KB

页数:39页

时间:2018-10-04

生物医学工程专业毕业论文  [精品论文]  基于医学信息数据仓库的数据挖掘研究_第1页
生物医学工程专业毕业论文  [精品论文]  基于医学信息数据仓库的数据挖掘研究_第2页
生物医学工程专业毕业论文  [精品论文]  基于医学信息数据仓库的数据挖掘研究_第3页
生物医学工程专业毕业论文  [精品论文]  基于医学信息数据仓库的数据挖掘研究_第4页
生物医学工程专业毕业论文  [精品论文]  基于医学信息数据仓库的数据挖掘研究_第5页
资源描述:

《生物医学工程专业毕业论文 [精品论文] 基于医学信息数据仓库的数据挖掘研究》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、生物医学工程专业毕业论文[精品论文]基于医学信息数据仓库的数据挖掘研究关键词:医学信息数据仓库数据挖掘SQLServer集成环境摘要:随着数据库技术的飞速发展,信息技术已渗透到包括医学在内的各种领域。很多大中型医院都相继建立了自己的医院信息系统(HIS),随着HIS的应用和不断发展,数据库中的数据量迅速膨胀,数据库规模逐渐扩大,复杂程度日益增加。但是尽管积累了大量的业务数据,真正能将这些数据的价值挖掘出来,并运用到医院的临床辅助诊断和日常管理决策中去的却很少。本课题针对这种现状,提出了建立基于HIS系

2、统的医学信息数据仓库,在此基础上,对数据仓库中的医疗数据进行疾病监测、预测、医院管理辅助决策等方面的数据挖掘。为医务工作者、临床管理人员、科研人员提供辅助决策与综合分析的工具。本课题通过研究现有医院信息管理系统的结构和数据组成,利用前沿的数据仓库技术,根据实际需求,从医院海量信息数据库中分析、提取、确立主题,进行有效地数据组织,来构建数据仓库模型。在进行数据清理和数据转换后,实现对数据仓库的数据装载。对创建好的数据仓库可以进行SQL查询、报表统计、OLAP数据分析及数据挖掘等方面的应用,来有效地服务于

3、医院的全方位管理决策。本课题主要进行了以下研究:1.通过对源数据库中的数据进行大量数据分析和数据预处理工作,提取出构建数据仓库的主题。采用了微软最新推出的MicrosoftSQLServer2008企业级的数据仓库平台构建基于HIS的医学信息数据仓库,SQLServer2008建立在SQLServer2005的基础之上,进一步对各项服务进行改进,是一个完整的数据管理与商业智能平台,在性能和可扩展性方面排在世界领先的地位。2.运用SQLServer2008的集成环境BusinessIntelligenc

4、eDevelopmentStudio创建和使用基于医学信息数据仓库的数据挖掘模型。该环境包括数据挖掘算法和工具,使用这些算法和工具更易于生成用于各种项目的综合解决方案。3.介绍了几种经典的数据挖掘算法,并运用SQLServer2008中AnalysisServices数据挖掘组件提供的算法实现从多层次、多角度对医学信息数据仓库中门诊部和住院部信息进行数据挖掘和分析。探讨了在疾病监测控制、疾病预测、医院管理辅助决策等方面的数据挖掘应用。正文内容随着数据库技术的飞速发展,信息技术已渗透到包括医学在内的各种

5、领域。很多大中型医院都相继建立了自己的医院信息系统(HIS),随着HIS的应用和不断发展,数据库中的数据量迅速膨胀,数据库规模逐渐扩大,复杂程度日益增加。但是尽管积累了大量的业务数据,真正能将这些数据的价值挖掘出来,并运用到医院的临床辅助诊断和日常管理决策中去的却很少。本课题针对这种现状,提出了建立基于HIS系统的医学信息数据仓库,在此基础上,对数据仓库中的医疗数据进行疾病监测、预测、医院管理辅助决策等方面的数据挖掘。为医务工作者、临床管理人员、科研人员提供辅助决策与综合分析的工具。本课题通过研究现有

6、医院信息管理系统的结构和数据组成,利用前沿的数据仓库技术,根据实际需求,从医院海量信息数据库中分析、提取、确立主题,进行有效地数据组织,来构建数据仓库模型。在进行数据清理和数据转换后,实现对数据仓库的数据装载。对创建好的数据仓库可以进行SQL查询、报表统计、OLAP数据分析及数据挖掘等方面的应用,来有效地服务于医院的全方位管理决策。本课题主要进行了以下研究:1.通过对源数据库中的数据进行大量数据分析和数据预处理工作,提取出构建数据仓库的主题。采用了微软最新推出的MicrosoftSQLServer20

7、08企业级的数据仓库平台构建基于HIS的医学信息数据仓库,SQLServer2008建立在SQLServer2005的基础之上,进一步对各项服务进行改进,是一个完整的数据管理与商业智能平台,在性能和可扩展性方面排在世界领先的地位。2.运用SQLServer2008的集成环境BusinessIntelligenceDevelopmentStudio创建和使用基于医学信息数据仓库的数据挖掘模型。该环境包括数据挖掘算法和工具,使用这些算法和工具更易于生成用于各种项目的综合解决方案。3.介绍了几种经典的数据挖

8、掘算法,并运用SQLServer2008中AnalysisServices数据挖掘组件提供的算法实现从多层次、多角度对医学信息数据仓库中门诊部和住院部信息进行数据挖掘和分析。探讨了在疾病监测控制、疾病预测、医院管理辅助决策等方面的数据挖掘应用。随着数据库技术的飞速发展,信息技术已渗透到包括医学在内的各种领域。很多大中型医院都相继建立了自己的医院信息系统(HIS),随着HIS的应用和不断发展,数据库中的数据量迅速膨胀,数据库规模逐渐扩大,复杂程度日益增加。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。