欢迎来到天天文库
浏览记录
ID:19484688
大小:1.69 MB
页数:105页
时间:2018-10-02
《强背景噪声环境下语音增强算法的研究及应用毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、密级:内部★2年强背景噪声环境下语音增强算法的研究及应用ResearchandApplicationofSpeechEnhancementinStrongNoiseEnvironment(申请清华大学工学硕士学位论文)培养单位:学科:研究生:指导教师:关于学位论文使用授权的说明本人完全了解清华大学有关保留、使用学位论文的规定,即:清华大学拥有在著作权法规定范围内学位论文的使用权,其中包括:(1)已获学位的研究生必须按学校规定提交学位论文,学校可以采用影印、缩印或其他复制手段保存研究生上交的学位论文;(2)为
2、教学和科研目的,学校可以将公开的学位论文作为资料在图书馆、资料室等场所供校内师生阅读,或在校园网上供校内师生浏览部分内容;(3)根据《中华人民共和国学位条例暂行实施办法》,向国家图书馆报送可以公开的学位论文。本人保证遵守上述规定。(保密的论文在解密后遵守此规定)作者签名:导师签名:日期:日期:摘要人们在语音通信过程中不可避免地会受到各种噪声的干扰,影响了通信质量。同时,噪声的存在也使低速率语音编码以及语音识别等语音处理系统的性能下降。语音增强作为一种预处理手段,不失为解决噪声污染的一种有效途径。在各类语音增
3、强技术中,基于短时谱幅度估计的语音增强算法处于主流位置,得到广泛应用。本文针对短时谱幅度估计在低输入信噪比以及非平稳噪声环境下,性能不够理想这一不足加以研究改进,完成稳健的语音增强算法设计和实时实现。根据对短时谱幅度估计算法进行分析,指出了影响其性能的关键技术:噪声统计特性的估计、语音激活检测算法、先验信噪比估计、增益函数的修正等,为算法改进指明了研究方向。首先,提出了一种快速估计噪声统计特性的算法,减小了噪声估计的跟踪延时,在一定程度上改善了噪声过估计的现象,因而能够在低输入信噪比以及非平稳噪声干扰环境下
4、快速准确地跟踪噪声特性。其次,研究了一种基于高斯模型和一致最大势检验的语音激活检测算法,由于检测门限与噪声估计相适应,因而提高了检测性能,尤其在非平稳噪声干扰环境下得到了良好的检测效果。同时,利用语音激活检测算法中傅里叶变换得到的频谱信息,方便地实现了双音多频信号的检测和生成。再次,对先验信噪比估计的反馈因子进行最优化调整,引入与长时统计信息相关的自适应下限,有效地协调了先验信噪比估计的稳定性和快速跟踪能力。同时,利用软判决信息,即有关语音存在的概率信息,修正增益函数表达式中的先验/后验信噪比,有效地消除了
5、“音乐”噪声,使去噪后的语音更加平滑、自然、易于接受。最后,相关算法已用C语言和TMS320C55xDSP汇编语言在PC机和DSP硬件平台上实现。仿真实验和实时测试均表明改进的语音增强算法在不明显损伤语音可懂度的同时,可以有效地抑制背景噪声、提高信噪比,在低输入信噪比和非平稳噪声环境下性能提高尤为显著。关键词:语音增强非平稳噪声短时谱幅度估计噪声估计语音激活检测先验信噪比AbstractInvoicecommunications,speechsignalscanbecontaminatedbyvarious
6、noisesinevitably,whichaffectsthecommunicationquality.Furthermore,noiseinterferencedegradestheperformanceofspeechprocessingsystems,suchaslowbit-ratevocoderandspeechrecognition.Speechenhancementisaneffectivepreprocessingmethodtoreducethedisturbanceofnoise.Am
7、ongthespeechenhancementtechniques,themethodsbasedonShort-TimeSpectralAmplitude(STSA)estimationhavebeenwellinvestigatedandbroughtintowideuse.Inthisdissertation,alotofresearchworkhasbeendonetoimprovetheperformanceofSTSAestimationagainsttheenvironmentsoflowSi
8、gnal-to-NoiseRatio(SNR)inputandnon-stationarynoise.TheproposedrobustapproachofspeechenhancementhasbeenimplementedontheTMS320C55xDSPplatform.AccordingtotheanalysisoftheSTSA-basedspeechenhancementalgorithm,thek
此文档下载收益归作者所有