高中数学 三角函数公式大全()

高中数学 三角函数公式大全()

ID:1946848

大小:226.50 KB

页数:7页

时间:2017-11-13

高中数学 三角函数公式大全()_第1页
高中数学 三角函数公式大全()_第2页
高中数学 三角函数公式大全()_第3页
高中数学 三角函数公式大全()_第4页
高中数学 三角函数公式大全()_第5页
资源描述:

《高中数学 三角函数公式大全()》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、三角公式汇总一、任意角的三角函数在角的终边上任取一点,记:,正弦:余弦:正切:余切:正割:余割:注:我们还可以用单位圆中的有向线段表示任意角的三角函数:如图,与单位圆有关的有向线段、、分别叫做角的正弦线、余弦线、正切线。二、同角三角函数的基本关系式倒数关系:,,。商数关系:,。平方关系:,,。三、诱导公式⑴、、、、的三角函数值,等于的同名函数值,前面加上一个把看成锐角时原函数值的符号。(口诀:函数名不变,符号看象限)⑵、、、的三角函数值,等于的异名函数值,前面加上一个把看成锐角时原函数值的符号。(口诀:函数名改变,符号看象限)四、和角公式和差角公式五、二倍角公式…二倍角的余弦

2、公式有以下常用变形:(规律:降幂扩角,升幂缩角),,。六、万能公式(可以理解为二倍角公式的另一种形式),,。万能公式告诉我们,单角的三角函数都可以用半角的正切来表示。七、和差化积公式…⑴…⑵…⑶…⑷了解和差化积公式的推导,有助于我们理解并掌握好公式:两式相加可得公式⑴,两式相减可得公式⑵。两式相加可得公式⑶,两式相减可得公式⑷。八、积化和差公式我们可以把积化和差公式看成是和差化积公式的逆应用。九、辅助角公式()其中:角的终边所在的象限与点所在的象限相同,,,。十、正弦定理(为外接圆半径)十一、余弦定理十二、三角形的面积公式(两边一夹角)(为外接圆半径)(为内切圆半径)…海仑公

3、式(其中)十三诱导公式  公式一:设α为任意角,终边相同的角的同一三角函数的值相等k是整数sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotαsec(2kπ+α)=secαcsc(2kπ+α)=cscα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsec(π+α)=-secαcsc(π+α)=-cscα公式三:任意角α与-α的三角函数值之间的关系sin(-α)=-sinαcos(-α

4、)=cosαtan(-α)=-tanαcot(-α)=-cotαsec(-α)=secαcsc(-α)=-cscα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsec(π-α)=-secαcsc(π-α)=cscα公式五:利用公式四和三角函数的奇偶性可以得到α-π与α的三角函数值之间的关系sin(α-π)=-sinαcos(α-π)=-cosαtan(α-π)=tanαcot(α-π)=cotαsec(α-π)=-secαcsc(α-π)=-csc

5、α公式六:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsec(2π-α)=secαcsc(2π-α)=-cscα公式七:π/2±α及3π/2±α与α的三角函数值之间的关系sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsec(π/2+α)=-cscαcsc(π/2+α)=secαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotα

6、cot(π/2-α)=tanαsec(π/2-α)=cscαcsc(π/2-α)=secαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsec(3π/2+α)=cscαcsc(3π/2+α)=-secαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsec(3π/2-α)=-cscαcsc(3π/2-α)=-secα下面的公式再记一次,大家:四、和角公式和差角公式五、二倍角公式…二倍角的余弦公式有以下常用变

7、形:(规律:降幂扩角,升幂缩角),,。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。