《数学归纳法及其应用举例》教案

ID:1942272

大小:151.00 KB

页数:5页

时间:2017-11-13

《数学归纳法及其应用举例》教案_第1页
《数学归纳法及其应用举例》教案_第2页
《数学归纳法及其应用举例》教案_第3页
《数学归纳法及其应用举例》教案_第4页
《数学归纳法及其应用举例》教案_第5页
资源描述:

《《数学归纳法及其应用举例》教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、《数学归纳法及其应用举例》教案中卫市第一中学 俞清华教学目标:1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观和勇于探索的科学精神。教学重点:了解数学归纳法的原理及掌握用数学归纳法证题的方法。教学难点:数学归纳法原理的了解及递推思想在解题中的体现。教学过程:一.创设情境,回顾引入师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从

2、前有一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢?生:因为有姓“万”的。师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢?生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。)师:其实员外儿子观察、归纳、猜想的能力还是

3、很不错的,但遗憾的是他猜错了!在数学上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢?生:有。例如等差数列通项公式的推导。师:很好。我们是由等差数列前几项满足的规律:,,,,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗?生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。

4、师:对。(投影展示有关定义)像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法。那么,用完全归纳法得出的结论可靠吗?生:(齐答)可靠。师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?生:不可靠。这是因为只考察了部分情况,结论不一定具有普遍性。5师:是不可靠的。不妨再举一例容易验证,,,…,,如果由此作出结论——对于任何,

5、都成立,那就是错误的。事实上,。二.设置问题,引导探究师:请问同学们你们玩过多米诺骨牌吗?生:(没)玩过。(课堂气氛由刚才的沉思变得开始活跃)师:无论玩没玩过,下面我们一起来玩一下。(投影仪上进行生动、形象的骨牌演示)在观看骨牌玩法时,请思考:满足什么条件,骨牌可以全部倒下?生:假设第张骨牌倒下,保证第张骨牌倒下。师:这样就保证了可以递推下去,骨牌就可以全部倒下了,是吗?生:不是。我们不知道第张骨牌是否倒下了,从而我们是假设第张骨牌倒下。若第张骨牌倒下,需要第张骨牌倒下;若第张骨牌倒下,需要第张骨牌倒下,…

6、…,最后递归到需要第1张骨牌倒下,所以,还要有一个条件:第一张骨牌倒下。师:大家说有了这两个条件,骨牌是不是可以顺次的倒下呢?生:是。师:上面同学说得很好,要使骨牌全部倒下应满足两个条件(投影显示)第一个条件是:第一张骨牌倒下;第二个条件是:假设第张骨牌倒下,第张骨牌一定倒下。现在你能不能利用这种思想(递推思想)来证明等差数列通项公式呢?是不是应该建立一种递推顺序呢?生:时结论正确时结论正确时,结论正确,时结论正确时结论正确师:由于这个过程推理方法是一样的,能否把这个过程一般化呢?生:假设时结论正确时结论也

7、正确。师:这样就保证了递推。下面你能证明等差数列通项公式了吗?三.解决问题,引出概念(学生共答,教师板书)证明:(1)当时,左边,右边,等式是成立的。(2)假设当时等式成立,就是,下面看看是否能推出时等式也成立,那么等于什么?生:。师:哦!看来时等式也成立,这样做对吗?生:(齐答)不对。师:注意在证时,一定要用到归纳假设,时等式成立这一步,因为这样才能保证递推,那么与有什么关系呢?(学生齐答,教师继续板书)5。这就是说,当时,等式也成立,大家说有了这两步,是不是就证明了等差数列通项公式的正确性了呢?生:时等

8、式成立时等式成立时等式成立……所以取任何正整数等式都成立。师:这种证明方法叫做数学归纳法,那么你能谈谈什么是数学归纳法,及其用数学归纳法证题的步骤是怎样的呢?生:(在学生交流,教师引导完善下)数学归纳法(证明一个与正整数有关的命题的步骤)是:(投影跟踪给出)。(1)证明当取第一个值(例如或2等)时结论正确;(2)假设当(,且)时结论正确,证明当时结论也正确。根据(1)和(2),可知命题对从开始的所有正整数都正确。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
正文描述:

《《数学归纳法及其应用举例》教案》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、《数学归纳法及其应用举例》教案中卫市第一中学 俞清华教学目标:1.认知目标:了解数学归纳法的原理,掌握用数学归纳法证题的方法。2.能力目标:培养学生理解分析、归纳推理和独立实践的能力。3.情感目标:激发学生的求知欲,增强学生的学习热情,培养学生辩证唯物主义的世界观和勇于探索的科学精神。教学重点:了解数学归纳法的原理及掌握用数学归纳法证题的方法。教学难点:数学归纳法原理的了解及递推思想在解题中的体现。教学过程:一.创设情境,回顾引入师:本节课我们学习《数学归纳法及其应用举例》(板书)。首先给大家讲一个故事:从

2、前有一个员外的儿子学写字,当老师教他写数字的时候,告诉他一、二、三的写法时,员外儿子很高兴,告诉老师他会写数字了。过了不久,员外要写请帖宴请亲朋好友到家里做客,员外儿子自告奋勇地要写请帖。结果早晨开始写,一直到了晚间也没有写完,请问同学们,这是为什么呢?生:因为有姓“万”的。师:对!有姓“万”的。员外儿子万万也没有想到“万”不是一万横,而是这么写的“万”。通过这个故事,你对员外儿子有何评价呢?生:(学生的评价主要会有两种,一是员外儿子愚蠢,二是员外儿子还是聪明的。)师:其实员外儿子观察、归纳、猜想的能力还是

3、很不错的,但遗憾的是他猜错了!在数学上,我们很多时候是通过观察→归纳→猜想,这种思维过程去发现某些结论,它是一种创造性的思维过程。那么,我们在以前的学习过程中,有没有也像员外儿子那样猜想过某些结论呢?生:有。例如等差数列通项公式的推导。师:很好。我们是由等差数列前几项满足的规律:,,,,……归纳出了它的通项公式的。其实我们推导等差数列通项公式的方法和员外儿子猜想数字写法的方法都是归纳法。那么你能说说什么是归纳法,归纳法有什么特点吗?生:由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。特点:特殊→一般。

4、师:对。(投影展示有关定义)像这种由特殊事例得出一般结论的归纳推理方法,通常叫做归纳法。根据推理过程中考察的对象是涉及事物的一部分还是全部,分为不完全归纳法和完全归纳法。完全归纳法是一种在研究了事物的所有(有限种)特殊情况后得出一般结论的推理方法,又叫做枚举法。那么,用完全归纳法得出的结论可靠吗?生:(齐答)可靠。师:用不完全归纳法得出的结论是不是也是可靠的呢?为什么?生:不可靠。这是因为只考察了部分情况,结论不一定具有普遍性。5师:是不可靠的。不妨再举一例容易验证,,,…,,如果由此作出结论——对于任何,

5、都成立,那就是错误的。事实上,。二.设置问题,引导探究师:请问同学们你们玩过多米诺骨牌吗?生:(没)玩过。(课堂气氛由刚才的沉思变得开始活跃)师:无论玩没玩过,下面我们一起来玩一下。(投影仪上进行生动、形象的骨牌演示)在观看骨牌玩法时,请思考:满足什么条件,骨牌可以全部倒下?生:假设第张骨牌倒下,保证第张骨牌倒下。师:这样就保证了可以递推下去,骨牌就可以全部倒下了,是吗?生:不是。我们不知道第张骨牌是否倒下了,从而我们是假设第张骨牌倒下。若第张骨牌倒下,需要第张骨牌倒下;若第张骨牌倒下,需要第张骨牌倒下,…

6、…,最后递归到需要第1张骨牌倒下,所以,还要有一个条件:第一张骨牌倒下。师:大家说有了这两个条件,骨牌是不是可以顺次的倒下呢?生:是。师:上面同学说得很好,要使骨牌全部倒下应满足两个条件(投影显示)第一个条件是:第一张骨牌倒下;第二个条件是:假设第张骨牌倒下,第张骨牌一定倒下。现在你能不能利用这种思想(递推思想)来证明等差数列通项公式呢?是不是应该建立一种递推顺序呢?生:时结论正确时结论正确时,结论正确,时结论正确时结论正确师:由于这个过程推理方法是一样的,能否把这个过程一般化呢?生:假设时结论正确时结论也

7、正确。师:这样就保证了递推。下面你能证明等差数列通项公式了吗?三.解决问题,引出概念(学生共答,教师板书)证明:(1)当时,左边,右边,等式是成立的。(2)假设当时等式成立,就是,下面看看是否能推出时等式也成立,那么等于什么?生:。师:哦!看来时等式也成立,这样做对吗?生:(齐答)不对。师:注意在证时,一定要用到归纳假设,时等式成立这一步,因为这样才能保证递推,那么与有什么关系呢?(学生齐答,教师继续板书)5。这就是说,当时,等式也成立,大家说有了这两步,是不是就证明了等差数列通项公式的正确性了呢?生:时等

8、式成立时等式成立时等式成立……所以取任何正整数等式都成立。师:这种证明方法叫做数学归纳法,那么你能谈谈什么是数学归纳法,及其用数学归纳法证题的步骤是怎样的呢?生:(在学生交流,教师引导完善下)数学归纳法(证明一个与正整数有关的命题的步骤)是:(投影跟踪给出)。(1)证明当取第一个值(例如或2等)时结论正确;(2)假设当(,且)时结论正确,证明当时结论也正确。根据(1)和(2),可知命题对从开始的所有正整数都正确。

显示全部收起
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。
关闭