欢迎来到天天文库
浏览记录
ID:19105351
大小:17.40 KB
页数:6页
时间:2018-09-28
《网络规划设计师论文XX》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、网络规划设计师论文XX 设计师论文怎么写呢?下面是小编整理的网络规划设计师论文,欢迎来参考借鉴! 根据网络规划的要求,利用大数据可以从覆盖评估,干扰评估和价值评估三个维度建立基于大数据挖掘的LTE网络规划体系,通过对现网问题的全面、准确分析定位,预知LTE网络规划存在的问题,提升LTE网络规划的准确性。 良好的覆盖是网络建设的最基本要求,基站站间距过大,基站覆盖过远会造成部分地点盲覆盖或者室内深度覆盖不足;而站间距过小,重叠覆盖会带来较大干扰,同样影响用户感受,同时不必要的重复建站将会加大投资成本。理想的蜂窝网络结
2、构应该在保证用户移动性的前提下使小区间的交叠区域处在一个较低的水平借助现网2G/3G实测数据,参考工参,扫频及MR等大数据,利用奥村-哈塔传播方程矩阵理论运算,根据不同频段自由空间传播模型损耗、模拟仿真覆盖及损耗矩阵,评估规划LTE网络的覆盖情况;同时构建贴合现网实际的小区传播路损模型,有效识别LTE网络的弱覆盖和过覆盖区域,实现“点、线、面”联合校准验证,获取真实、准确和全面的小区覆盖规划数据。 干扰是影响LTE网络质量的关键因素,我们引入干扰贡献系数来评估无线网络重叠覆盖度。定义干扰邻区的能量之和与主小区的总能量的
3、比值为干扰贡献系数,用其来评估主小区A,系数越大,说明该小区对外的干扰越大,需要整改的优先级越高。 传统规划主要从覆盖与干扰两个维度分析,不能完全识别出高价值站点,导致网络部署后出现建设偏离业务热点,超闲小区较多等问题。而基于大数据挖掘的LTE网络规划可基于话务热点、用户/终端及价值业务等多维度进行关联性分析。首先梳理出数据及话务热点、智能终端/数据卡渗透高区域,判定流量价值高的区域;其次发掘出数据业务使用率高,但实际速率低,话务需求被压制的区域;再次利用VIP/投拆用户列表导出数据业务投诉用户和VIP用户区域,更直观
4、、有效的体现网络热点投诉、流量变化较大的重点小区数据,定位重要客户的高价值流量区域,聚焦影响用户感知的重要问题,发掘LTE潜在高价值区域,有效指导LTE网络规划效益,降低网络资源的管理成本。利用基于栅格的多维度价值得分评估体系,通过高流量小区选择,实现用户分布地理化关联,进行多维度地理化综合分析,得到多个小区构成的栅格的价值得分,得出高优先级建站区域。 1)统计各栅格流量、用户使用TD-SCDMA的速率、用户数量、终端分布、业务流量分布等数据,当某个栅格点上指标值大于全网栅格该指标平均值的k倍,即赋予该栅格价值点相应的
5、分值。 2)栅格价值点相应的分值:栅格内指标值/(全网栅格点该指标平均值×k),k值建议为1.2,意义为在此栅格点的其中某一项因素大于该项因素的平均值的1.2倍,才会进行价值得分分析,小于该值则该栅格点的该项因素的价值得分为0。 3)单个栅格总得分=权重1×热点得分+权重2×速率得分+权重3×终端得分+权重4×业务得分…。 4)统计基站覆盖范围内包含的栅格数量以及各个栅格上的分值,最终输出规划基站的总栅格得分排序,排序高低反映了该基站的价值高低。 评估分析一般在待建站点资源收集后,按照价值高低,基于基站覆盖范围和
6、受干扰影响程度,选择建站顺序。根据实际情况,可一方面利用2/3G旧站址,一方面建议增加符合合理网络结构的新站点,达到良好规划的目的。 LTE规划过程利用收集到的大量数据,包括工参数据、性能数据、经分口数据、MC口数据、投诉数据、测试数据等六大项13类数据,从中提取有用信息进行分析。 根据大数据删冗去错机制进行数据清洗(见图7),保持数据的准确性。在规划中首先实现数据去冗,对话统过期数据、工参多余字段集中去除;其次是数据去重,去除相同路段多次测试的数据,排除话统及性能相同的数据,保证数据唯一性;再次是数据纠错,结合数据
7、特性,对统计异常、工参错误等数据进行纠错,保证数据区间在合理范围。 根据数据的特征、变量等进行“数据降维”,从覆盖,干扰和价值维度对数据进行投影降维,简化分析数据的复杂度。同时运用强关联聚合、相近聚合、相关聚合等聚合模型进行“关联聚合”,比如在覆盖评估中将道路测试、路测扫频、用户测量报告等信息按照关联强弱聚合,在价值评估中将业务分布、用户分布、终端分布等信息按照比例进行关联聚合。具体来讲,以用户的地理位置为索引,关联其所在位置的信号强度,干扰情况,终端支持类型信息,业务信息以及所在位置的周围基站分布情况,周围环境情况,
8、人群流动情况等等,建立基于时间、位置、用户、终端、应用等多维度的用户行为聚合模型。根据用户行为模型,分析筛选得到绝对静态用户数(静态用户定义为单用户在某小区有5天产生流量且每天在该小区产生流量占当天该用户总流量的70%以上,且产生的流量大于10MB/周)全省共计3.8万人,涉及5798个小区。根据用户在占用静态小区时
此文档下载收益归作者所有