线三等角型相似三角形

线三等角型相似三角形

ID:18929597

大小:775.50 KB

页数:11页

时间:2018-09-21

线三等角型相似三角形_第1页
线三等角型相似三角形_第2页
线三等角型相似三角形_第3页
线三等角型相似三角形_第4页
线三等角型相似三角形_第5页
资源描述:

《线三等角型相似三角形》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、智浪教育---普惠英才文库—线三等角型相似三角形三等角型相似三角形是以等腰三角形(等腰梯形)或者等边三角形为背景,一个与等腰三角形的底角相等的顶点在底边所在的直线上,角的两边分别与等腰三角形的两边相交如图所示:等角的顶点在底边上的位置不同得到的相似三角形的结论也不同,当顶点移动到底边的延长线时,形成变式图形,图形虽然变化但是求证的方法不变。此规律需通过认真做题,细细体会。典型例题【例1】如图,等边△ABC中,边长为6,D是BC上动点,∠EDF=60°(1)求证:△BDE∽△CFD(2)当BD=1,FC=3时,求BECADBEF【思路分析】本题属

2、于典型的三等角型相似,由题意可得∠B=∠C=∠EDF=60°再用外角可证∠BED=∠CDF,可证△BDE与△CFD相似排出相似比便可求得线段BE的长度解:(1)∵△ABC是等边三角形,∠EDF=60°∴∠B=∠C=∠EDF=60°∵∠EDC=∠EDF+∠FDC=∠B+∠BED∴∠BED=∠FDCCDEABF∴△BDE∽△CFD(2)∵△BDE∽△CFD∴∵BD=1,FC=3,CD=5∴BE=点评:三等角型的相似三角形中的对应边中已知三边可以求第四边。【例2】如图,等腰△ABC中,AB=AC,D是BC中点,∠EDF=∠B,求证:△BDE∽△DFE

3、【思路分析】比较例1来说区别仅是点D成为了BC的中点,所以△BDE与△CFD相似的结论依然成立,用相似后的对应边成比例,以及BD=CD的条件可证得△BDE和△DFE相似解:∵AB=AC,∠EDF=∠B∴∠B=∠C=∠EDF∵∠EDC=∠EDF+∠FDC=∠B+∠BED∴∠BED=∠FDC∴△BDE∽△CFD智浪教育---普惠英才文库∴又∵BD=CD∴即∵∠EDF=∠B∴△BDE∽△DFE点评:三等角型相似中若点D是等腰三角形底边上任意一点则仅有一对相似三角形,若点D是底边中点则有三对相似三角形,△BDE与△CFD相似后若得加上BD=CD可证得△

4、CFD与△DFE相似【例3】如图,在△ABC中,AB=AC=5cm,BC=8,点P为BC边上一动点(不与点B、C重合),过点P作射线PM交AC于点M,使∠APM=∠B;(1)求证:△ABP∽△PCM;(2)设BP=x,CM=y.求y与x的函数解析式,并写出函数的定义域.(3)当△APM为等腰三角形时,求PB的长.ABPCM【思路分析】第(1)(2)小题都是用常规的三等角型相似的方法。对△APM进行等腰三角形的分类讨论时,可将条件转化成与△ABP∽△PCM相关的结论ABCPM解:(1)∵AB=AC,∠APM=∠B∴∠APM=∠B=∠C∵∠APC=

5、∠APM+∠MPC=∠B+∠BAP∴∠BAP=∠MPC∴△ABP∽△PCM(2)∵BP=x,CM=y,CP=8-xABCPM∵∴∴(3)当AP=PM时∵∴PC=AB=5∴BP=3当AP=AM时∵∠APM=∠B=∠C∴∠PAM=∠BAC即点P与点B重合∴P不与点B、C重合∴舍去当MP=AM时∴∠MAP=∠MPA∴△MAP∽△ABC∴智浪教育---普惠英才文库∴即∴BP=点评:等腰三角形分类讨论需要灵活应用,可采用的方法添底边上的高,将等腰的条件进行转化,三等角型相似这类问题中可将等腰的条件转化至△ABP和△PCM中简化运算。【例4】(1)在中,,

6、,点、分别在射线、上(点不与点、点重合),且保持.①若点在线段上(如图10),且,求线段的长;②若,,求与之间的函数关系式,并写出函数的定义域;(2)正方形的边长为(如图12),点、分别在直线、上(点不与点、点重合),且保持.当时,写出线段的长(不需要计算过程,请直接写出结果).ABCD图12ABCPQABC备用图【思路分析】本例与前几例的区别在于与等腰三角形底角相等的角的顶点不仅在线段上还可以运动至线段的延长线上,这类变式问题是上海中考中最常见的,虽然图形改变,但是方法不变,依旧是原来的两个三角形相似列出比例式后求解。当等腰三角形变式为正方形

7、时,依然沿用刚才的方法便可破解此类问题。解:(1)∵,,∴.又∵,∴.∴∽.∴.∵,,,,智浪教育---普惠英才文库ABC备用图PQ∴,.(2)若点在线段上,由(1)知.∵,,∴,又∵,,∴,即.故所求的函数关系式为,.若点在线段的延长线上,如图11.∵,,,∴.又∵,,,∴.∴∽.∴.∵,,,,∴,即.(2)当点在线段上,,或.当点在线段的延长线上,则点在线段的延长线上,.当点在线段的延长线上,则点在线段的延长线上,.点评:此题是典型的图形变式题,记住口诀:“图形改变,方法不变”。动点在线段上时,通过哪两个三角形相似求解,当动点在线段的延长线

8、上时,还是找原来的两个三角形,多数情况下这两个三角形还是相似的,还是可以沿用原来的方法求解。强化训练:1.如图,在△ABC中,,,是边上的一个动点,点

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。