燃气轮机故障诊断毕业论文

燃气轮机故障诊断毕业论文

ID:18815945

大小:458.00 KB

页数:52页

时间:2018-09-25

燃气轮机故障诊断毕业论文_第1页
燃气轮机故障诊断毕业论文_第2页
燃气轮机故障诊断毕业论文_第3页
燃气轮机故障诊断毕业论文_第4页
燃气轮机故障诊断毕业论文_第5页
资源描述:

《燃气轮机故障诊断毕业论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、舰用燃气轮机某关键部件故障诊断方法研究系别信息工程系专业测控技术与仪器班级B141401学号B14140129姓名袁斌指导教师崔建国负责教师崔建国沈阳航空航天大学北方科技学院2015年6月摘要燃气轮机的关键部件之一滚动轴承是机械设备运行过程中产生最易产生故障的零件,它运行的正常与否直接影响到整台机器的性能。防止故障升级,发生灾难性事故。所以对滚动轴承故障诊断技术进行探讨和学习就具有十分重要的意义。本文主要以燃气轮机的滚动轴承为研究对象,利用测量的轴承振动信号参数来进行故障诊断,利用神经网络技术对某一动态的模拟原理,应用到对滚动轴承故障诊断的

2、具体方面,设计并构建了基于BP神经网络和自适应模糊神经网络(AdaptiveNetworkFuzzyInferenceSystem)的滚动轴承故障诊断系统,在MATLAB软件里对构造的训练样本进行训练,利用训练完成后的神经网络我们就可以对滚动状态故障进行诊断。关键词:滚动轴承;BP神经网络;模糊神经网络AbstractRollingbearingisoneofthemostordinarypartsinmechanicalmachine,itsrunningstatecaninfluencetheperformanceofthewholem

3、achinedirectly,theaircraftstabilizerhealthstatusneedtobemonitoredinrealtimetoensuretheaircraftflysafety.soitisimportanttostudythetechnologyoffaultdiagnosisforrollingbearing.Onthebasisofanalyzingthefaultmechanismandvibrationsignalcharacteristicsofrollingbearingsystematicall

4、y,andafteranalyzingandprocessingthevibrationsignalsofrightandfaultstateofrollingbearing,partialappropriatefeatureparametersareselectedastheinputoftheneuralnetworkaccordingtothetimeandfrequencydomaincharacteristicsofparametersinthisthesis.andthefaultdiagnosissystemforrollin

5、gbearingbasedonBPneuralnetworkisbuiltup.Finally,andfuzzyartificialneuralnetworkdiagnosistechniquethetrainingsetofrightandfaultstatesofrollingbearingisbuiltupbyusingthemeasuringdataofrollingbearingfromformerresearch,theneuralnetworkmodelistrainedontheplatformofMatlabsoftwar

6、e.theoperatingstateofrollingbearinghasbeendiagnosedbyusingtheabovenetworkwhichhasbeentrainedwell.Keywords:rollingbearing;BPneuralnetwork;fuzzyartificialneuralnetwork目录1绪论11.1课题背景和研究的意义11.1.1研究背景11.1.2研究意义21.2国内外故障诊断技术研究现状31.2.1国外现状31.2.2国内现状41.3研究内容52燃气轮机关键部件故障诊断的总体方案设计72.

7、1滚动轴承故障的总体方案设计72.2滚动轴承机理及故障类型72.2.1滚动轴承基本结构82.2.2滚动轴承故障类型92.3滚动轴承参数选取及处理103故障诊断方法133.1BP神经网络133.1.1BP神经网络原理133.1.2BP神经网络诊断方法143.2自适应模糊神经网络(ANFIS)173.2.1自适应模糊神经网络(ANFIS)结构183.2.2自适应模糊神经网络(ANFIS)原理203.2.3自适应模糊神经网络(ANFIS)诊断方法214滚动轴承BP神经网络故障诊断试验研究254.1故障诊断模型建立254.1.1各层节点数确定254

8、.1.2初始权值的选择274.1.3期望误差和学习率选取274.2轴承故障诊断的仿真试验研究274.2.1样本选取274.2.2神经网络的训练294.2.3神经网络的测试305基

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。