欢迎来到天天文库
浏览记录
ID:18806097
大小:1.06 MB
页数:12页
时间:2018-09-25
《福建省闽侯第二中学、连江华侨中学等五校教学联合体2017届高三上学期半期联考数学(理)试题含Word版含答案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高考资源网(ks5u.com)您身边的高考专家www.ks5u.com闽侯二中五校教学联合体2016—2017学年第一学期高三年段数学(理科)学科半期考联考试卷(考试时间:2016年11月18日上午)分值:150分完卷时间:120分钟命题者:林盛校对人:叶丽芳一、选择题(本大题共12题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合,,则()A.B.C.D.2.设,,,则()A.B.C.D.3.已知为锐角,若,则()A.3B.2C.D.4.下列函数中为偶函数又在上是增函数的是()A.B.C.D.5.下列四种说法正确的是()①若和都是定义在上的函数
2、,则“与同是奇函数”是“是偶函数”的充要条件。②命题“”的否定是“≤0”③命题“若x=2,则”的逆命题是“若,则x=2”-12-www.ks5u.com版权所有@高考资源网高考资源网(ks5u.com)您身边的高考专家④命题:在中,若,则;命题:在第一象限是增函数;则为真命题。A.①②③④B.①③C.③④D.③6.将函数的图象上各点的横坐标伸长为原来的2倍,再向右平移个单位,所得函数图象的一个对称中心为()A.B.C.D.7.函数的图象大致为()8.若函数在区间上单调递减,则实数的取值范围为()A.B.C.D.9.如图所示,由函数与函数在区间上的图象所围成的封闭图形的面积为()[来
3、源:学科网]A.B.C.D.10.已知是定义在R上的奇函数,当.则函数的零点的集合为( )A.B.C.D.-12-www.ks5u.com版权所有@高考资源网高考资源网(ks5u.com)您身边的高考专家11.已知函数,则关于的不等式的解集是()A.B.C.D.12.设函数,其中,若存在唯一的整数,使得,则的取值范围是()A.B.C.D.二、填空题(本大题共4小题,每小题5分,共20分)[来源:学。科。网]13.已知扇形的圆心角为,其弧长为,则此扇形的面积为。14.已知命题:,命题:幂函数在是减函数,若“”为真命题,“”为假命题,则实数的取值范围是_________。15.已知函
4、数是R上的偶函数,对于都有成立,且,当,且时,都有.则给出下列命题:①;②函数图象的一条对称轴为;③函数在[﹣9,﹣6]上为减函数;④方程在[﹣9,9]上有4个根;其中正确的命题序号是___________。16.已知定义在实数集的函数满足,且导函数,则不等式的解集为。三、解答题(本大题共6小题,共70分。其中第17题10分,第1822题各12分。解答时应写出必要的文字说明、证明过程或演算步骤)-12-www.ks5u.com版权所有@高考资源网高考资源网(ks5u.com)您身边的高考专家17.已知(1)求的值;(2)若,且角终边经过点,求的值。18.已知函数(1)求函数处的切线
5、方程;(2)若曲线与有三个不同的交点,求实数的取值范围。19.已知函数的部分图象如图所示。(1)求函数的解析式;(2)设,且方程有两个不同的实数根,求实数-12-www.ks5u.com版权所有@高考资源网高考资源网(ks5u.com)您身边的高考专家的取值范围和这两个根的和。20.已知,(1)求函数单调递增区间,并求满足函数在区间上是单调递增函数的实数的最大值;(2)若,,求的值。21.已知二次函数,满足且是偶函数。(1)求函数的解析式;(2)设,若对任意的,不等式恒成立,求实数的取值范围。22.已知函数()。(1)当时,求函数在上的最大值和最小值;(2)当时,是否存在实数,当(
6、是自然常数)时,函数的最小值是3,若存在,求出的值;若不存在,说明理由。-12-www.ks5u.com版权所有@高考资源网高考资源网(ks5u.com)您身边的高考专家闽侯二中五校教学联合体2016—2017学年第一学期高三年段数学(理科)学科半期考联考参考答案一、选择题(共12小题,每小题5分,共60分)题序123456[来源:学科网ZXXK]789101112答案DDABDCACBACC二、填空题(共4小题,每小题5分,共20分)13.1415.①②④16.三、解答题(共6小题,17题10分,18~22每小题12分,在答题卷上解答应写出必要的文字说明和演算步骤,只写最后答案不
7、得分。)17.解:(1)∵,∴,即,∴………………5分(2)由(1)得,又,,,………………6分又角终边经过点,………………7分-12-www.ks5u.com版权所有@高考资源网高考资源网(ks5u.com)您身边的高考专家………………9分………………10分18.解:(1)函数………………………1分………………………3分在处的切线方程是………………………4分即………………………5分(2)令即,设曲线与有三个不同的交点,函数与有三个不同的交点,令解得或,当,当时,在单
此文档下载收益归作者所有