应用回归分析第九章部分答案

应用回归分析第九章部分答案

ID:18775415

大小:311.50 KB

页数:17页

时间:2018-09-23

应用回归分析第九章部分答案_第1页
应用回归分析第九章部分答案_第2页
应用回归分析第九章部分答案_第3页
应用回归分析第九章部分答案_第4页
应用回归分析第九章部分答案_第5页
资源描述:

《应用回归分析第九章部分答案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第9章非线性回归9.1在非线性回归线性化时,对因变量作变换应注意什么问题?答:在对非线性回归模型线性化时,对因变量作变换时不仅要注意回归函数的形式,还要注意误差项的形式。如:(1)乘性误差项,模型形式为,(2)加性误差项,模型形式为。对乘法误差项模型(1)可通过两边取对数转化成线性模型,(2)不能线性化。一般总是假定非线性模型误差项的形式就是能够使回归模型线性化的形式,为了方便通常省去误差项,仅考虑回归函数的形式。9.2为了研究生产率与废料率之间的关系,记录了如表9.14所示的数据,请画出散点图,根据散点图的趋势拟合适当的回归模型。表9.14生

2、产率x(单位/周)1000200030003500400045005000废品率y(%)5.26.56.88.110.210.313.0解:先画出散点图如下图:从散点图大致可以判断出x和y之间呈抛物线或指数曲线,由此采用二次方程式和指数函数进行曲线回归。(1)二次曲线SPSS输出结果如下:从上表可以得到回归方程为:由x的系数检验P值大于0.05,得到x的系数未通过显著性检验。由x2的系数检验P值小于0.05,得到x2的系数通过了显著性检验。(2)指数曲线从上表可以得到回归方程为:由参数检验P值≈0<0.05,得到回归方程的参数都非常显著。从R2值

3、,σ的估计值和模型检验统计量F值、t值及拟合图综合考虑,指数拟合效果更好一些。9.3已知变量x与y的样本数据如表9.15,画出散点图,试用αeβ/x来拟合回归模型,假设:(1)乘性误差项,模型形式为y=αeβ/xeε(2)加性误差项,模型形式为y=αeβ/x+ε。表9.15序号xy序号xy序号xy14.200.08663.200.150112.200.35024.060.09073.000.170122.000.44033.800.10082.800.190131.800.62043.600.12092.600.220141.600.94053.

4、400.130102.400.240151.401.620解:散点图:(1)乘性误差项,模型形式为y=αeβ/xeε线性化:lny=lnα+β/x+ε令y1=lny,a=lnα,x1=1/x.做y1与x1的线性回归,SPSS输出结果如下:从以上结果可以得到回归方程为:y1=-3.856+6.08x1F检验和t检验的P值≈0<0.05,得到回归方程及其参数都非常显著。回代为原方程为:y=0.021e6.08/x(2)加性误差项,模型形式为y=αeβ/x+ε不能线性化,直接非线性拟合。给初值α=0.021,β=6.08(线性化结果),NLS结果如下:

5、从以上结果可以得到回归方程为:y=0.021e6.061/x根据R2≈1,参数的区间估计不包括零点且较短,可知回归方程拟合非常好,且其参数都显著。9.4Logistic回归函数常用于拟合某种消费品的拥有率,表8.17(书上239页,此处略)是北京市每百户家庭平均拥有的照相机数,试针对以下两种情况拟合Logistic回归函数。(1)已知,用线性化方法拟合,(2)u未知,用非线性最小二乘法拟合。根据经济学的意义知道,u是拥有率的上限,初值可取100;b0>0,0

6、线性回归分析,SPSS输出结果如下:由表ModelSummary得到,趋于1,回归方程的拟合优度好,由表ANOVA得到回归方程显著,由Coefficients表得到,回归系数都是显著的,得到方程:,进一步计算得到:,()回代变量得到最终方程形式为:最后看拟合效果,通过sequence画图:由图可知回归效果比较令人满意。(2)非线性最小二乘拟合,取初值,,:一共循环迭代8次,得到回归分析结果为:>0.994,得到回归效果比线性拟合要好,且:,,,回归方程为:。最后看拟合效果,由sequence画图:得到回归效果很好,而且较优于线性回归。9.5表9.

7、17(书上233页,此处略)数据中GDP和投资额K都是用定基居民消费价格指数(CPI)缩减后的,以1978年的价格指数为100。(1)用线性化乘性误差项模型拟合C-D生产函数;(2)用非线性最小二乘拟合加性误差项模型的C-D生产函数;(3)对线性化检验自相关,如果存在自相关则用自回归方法改进;(4)对线性化检验多重共线性,如果存在多重共线性则用岭回归方法改进;解:(1)对乘法误差项模型可通过两边取对数转化成线性模型。lny=lnA+alnK+blnL令y′=lny,β0=lnA,x1=lnK,x2=lnL,则转化为线性回归方程:y′=β0+a

8、x1+bx2+eSPSS输出结果如下:模型综述表从模型综述表中可以看到,调整后的为0.993,说明C-D生产函数拟合效果很好,也说明GD

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。